181 research outputs found

    Development of kinetic inductance detectors for CUORE and LUCIFER

    Get PDF
    The purpose of the CALDER project (Cryogenic wide-Area Light Detector with Excellent Resolution) is to develop new cryogenic light detectors to be used in CUORE and LUCIFER to improve the sensitivity in the search of neutrinoless double beta decay (0νββ) and dark matter. The sensitivity of CUORE can be increased by a factor of 3, thanks to the reduction of the α background, obtained by detecting the Cherenkov light (∼ 100 eV) emitted by βs events and not by the α-background. In LUCIFER the ability to discriminate β/γ events (∼ 100 eV of scintillation light) from nuclear recoils (no light) in the low-energy region opens the way to search for dark matter interactions. This detectors must have an active area of 25 cm2, a baseline energy resolution of ∼ 20 eV RMS and a working temperature of 10 mK. The technology chosen is based on the phonon-mediated kinetic inductance detectors (KIDs). This paper presents the results of the first prototypes tested

    Cryogenic light detectors with enhanced performance for rare events physics

    Full text link
    We have developed and tested a new way of coupling bolometric light detectors to scintillating crystal bolometers based upon simply resting the light detector on the crystal surface, held in position only by gravity. This straightforward mounting results in three important improvements: (1) it decreases the amount of non-active materials needed to assemble the detector, (2) it substantially increases the light collection efficiency by minimizing the light losses induced by the mounting structure, and (3) it enhances the thermal signal induced in the light detector thanks to the extremely weak thermal link to the thermal bath. We tested this new technique with a 16 cm2^2 Ge light detector with thermistor readout sitting on the surface of a large TeO2_2 bolometer. The light collection efficiency was increased by greater than 50\% compared to previously tested alternative mountings. We obtained a baseline energy resolution on the light detector of 20~eV RMS that, together with increased light collection, enabled us to obtain the best α\alpha vs β/γ\beta/\gamma discrimination ever obtained with massive TeO2_2 crystals. At the same time we achieved rise and decay times of 0.8 and 1.6 ms, respectively. This superb performance meets all of the requirements for the CUPID (CUORE Upgrade with Particle IDentification) experiment, which is a 1-ton scintillating bolometer follow up to CUORE.Comment: 6 pages, 4 figure

    Background suppression in massive TeO2_2 bolometers with Neganov-Luke amplified light detectors

    Full text link
    Bolometric detectors are excellent devices for the investigation of neutrinoless double-beta decay (0νββ\nu\beta\beta). The observation of such decay would demonstrate the violation of lepton number, and at the same time it would necessarily imply that neutrinos have a Majorana character. The sensitivity of cryogenic detectors based on TeO2_2 is strongly limited by the alpha background in the region of interest for the 0νββ\nu\beta\beta of 130^{130}Te. It has been demonstrated that particle discrimination in TeO2_2 bolometers is possible measuring the Cherenkov light produced by particle interactions. However an event-by-event discrimination with NTD-based light detectors has to be demonstrated. We will discuss the performance of a highly-sensitive light detector exploiting the Neganov-Luke effect for signal amplification. The detector, being operated with NTD-thermistor and coupled to a 750 g TeO2_2 crystal, shows the ability for an event-by-event identification of electron/gamma and alpha particles. The extremely low detector baseline noise, RMS 19 eV, demonstrates the possibility to enhance the sensitivity of TeO2_2-based 0νββ\nu\beta\beta experiment to an unprecedented level

    Deep-underground search for the decay of 180m-Ta with an ultra-low-background HPGe detector

    Full text link
    180m^{180m}Ta is the longest-lived metastable state presently known. Its decay has not been observed yet. In this work, we report a new result on the decay of 180m^{180m}Ta obtained with a 2015.122015.12-g tantalum sample measured for 527.7527.7 d with an ultra-low background HPGe detector in the STELLA laboratory of the Laboratori Nazionali del Gran Sasso, in Italy. Before the measurement, the sample has been stored deep-underground for ten years, resulting in subdominant background contributions from cosmogenically activated 182^{182}Ta. We observe no signal in the regions of interest and set half-life limits on the process for the two channels EC and β−\beta^-: T1/2, EC>1.6×1018T_{1/2,~\mathrm{EC}} > 1.6 \times 10^{18} yr and T1/2, β−>1.1×1018T_{1/2,~\beta^-} > 1.1\times 10^{18} yr (9090% C. I.), respectively. We also set the limit on the γ\gamma de-excitation / IC channel: T1/2, IC>4.1×1015T_{1/2,~\mathrm{IC}} > 4.1 \times 10^{15} yr (9090% C. I.). These are, as of now, the most stringent bounds on the decay of 180m^{180m}Ta worldwide.Comment: 8 pages, 7 figures, 4 table

    CALDER - Neutrinoless double-beta decay identification in TeO2_2 bolometers with kinetic inductance detectors

    Get PDF
    Next-generation experiments searching for neutrinoless double-beta decay must be sensitive to a Majorana neutrino mass as low as 10 meV. CUORE, an array of 988 TeO2_2 bolometers being commissioned at Laboratori Nazionali del Gran Sasso in Italy, features an expected sensitivity of 50-130 meV at 90% C.L, that can be improved by removing the background from α\alpha radioactivity. This is possible if, in coincidence with the heat release in a bolometer, the Cherenkov light emitted by the β\beta signal is detected. The amount of light detected is so far limited to only 100 eV, requiring low-noise cryogenic light detectors. The CALDER project (Cryogenic wide-Area Light Detectors with Excellent Resolution) aims at developing a small prototype experiment consisting of TeO2_2 bolometers coupled to new light detectors based on kinetic inductance detectors. The R&D is focused on the light detectors that could be implemented in a next-generation neutrinoless double-beta decay experiment.Comment: 8 pages, 3 figures, added reference to first result
    • …
    corecore