1,250 research outputs found
Preparation and evaluation of advanced electrocatalysts for phosphoric acid fuel cells
Results are presented for hydrogen oxidation and hydrogen oxidation poisoned by carbon monoxide at levels between 0 and 30%. Due to the high activities that are now being observed for our platinum based electrocatalysts, the hydrogen concentrations were reduced to 10% levels in the gas supplies. Perturbation techniques were used to determine that a mechanism for the efficient operation of our porous gas diffusion electrodes is diffusion of the carbon monoxide out of the electrode structure through the electrolyte film on the electro-catalyst. A survey of the literature on platinum group materials (PGM) was carried out so that an identification of successful electrocatalysts could be made. Two PGM electrocatalysts were prepared and performance data for hydrogen oxidation in hot phosphoric acid in the presence of high carbon monoxide concentrations showed that they matched the best platinum on carbon electrocatalysts but with an electrocatalyst cost that was half of the platinum catalyst cost
Preparation and evaluation of advanced electrocatalysts for phosphoric acid fuel cells
Two cooperative phenomena are required the development of highly efficient porous electrocatalysts: (1) is an increase in the electrocatalytic activity of the catalyst particle; and (2) is the availability of that electrocatalyst particle for the electromechanical reaction. The two processes interact with each other so that improvements in the electrochemical activity must be coupled with improvements in the availability of the electrocatalyst for reaction. Cost effective and highly reactive electrocatalysts were developed. The utilization of the electrocatalyst particles in the porous electrode structures was analyzed. It is shown that a large percentage of the electrocatalyst in anode structures is not utilized. This low utilization translates directly into a noble metal cost penalty for the fuel cell
Preparation and evaluation of advanced catalysts for phosphoric acid fuel cells
The platinum electrocatalysts were characterized for their crystallite sizes and the degree of dispersion on the carbon supports. One application of these electrocatalysts was for anodic oxidation of hydrogen in hot phosphoric acid fuel cells, coupled with the influence of low concentrations of carbon monoxide in the fuel gas stream. In a similar way, these platinum on carbon electrocatalysts were evaluated for oxygen reduction in hot phosphoric acid. Binary noble metal alloys were prepared for anodic oxidation of hydrogen and noble metal-refractory metal mixtures were prepared for oxygen reduction. An exemplar alloy of platinum and palladium (50/50 atom %) was discovered for anodic oxidation of hydrogen in the presence of carbon monoxide, and patent disclosures were submitted. For the cathode, platinum-vanadium alloys were prepared showing improved performance over pure platinum. Preliminary experiments on electrocatalyst utilization in electrode structures showed low utilization of the noble metal when the electrocatalyst loading exceeded one weight percent on the carbon
Effects of physical exercise on cardiovascular diseases: Biochemical, cellular, and organ effects
Measuring Inaccessible Residual Stresses Using Multiple Methods and Superposition
The traditional contour method maps a single
component of residual stress by cutting a body carefully in
two and measuring the contour of the cut surface. The cut also
exposes previously inaccessible regions of the body to
residual stress measurement using a variety of other techniques,
but the stresses have been changed by the relaxation
after cutting. In this paper, it is shown that superposition of
stresses measured post-cutting with results from the contour
method analysis can determine the original (pre-cut) residual
stresses. The general superposition theory using Bueckner’s
principle is developed and limitations are discussed. The
procedure is experimentally demonstrated by determining the
triaxial residual stress state on a cross section plane. The 2024-
T351 aluminum alloy test specimen was a disk plastically
indented to produce multiaxial residual stresses. After cutting
the disk in half, the stresses on the cut surface of one half were
determined with X-ray diffraction and with hole drilling on
the other half. To determine the original residual stresses, the
measured surface stresses were superimposed with the change
stress calculated by the contour method. Within uncertainty,
the results agreed with neutron diffraction measurements
taken on an uncut disk
Chandra Observation of Abell 2142: Survival of Dense Subcluster Cores in a Merger
We use Chandra data to map the gas temperature in the central region of the
merging cluster A2142. The cluster is markedly nonisothermal; it appears that
the central cooling flow has been disturbed but not destroyed by a merger. The
X-ray image exhibits two sharp, bow-shaped, shock-like surface brightness edges
or gas density discontinuities. However, temperature and pressure profiles
across these edges indicate that these are not shock fronts. The pressure is
reasonably continuous across these edges, while the entropy jumps in the
opposite sense to that in a shock (i.e. the denser side of the edge has lower
temperature, and hence lower entropy). Most plausibly, these edges delineate
the dense subcluster cores that have survived a merger and ram pressure
stripping by the surrounding shock-heated gas.Comment: Latex, 9 pages, 5 figures (including color), uses emulateapj.sty.
Submitted to Ap
Hormone Therapy Reduces Bone Resorption but not Bone Formation in Postmenopausal Athletes
INTRODUCTION: Independently, hormone therapy and exercise have well-established protective effects on bone parameters. The combined effects of hormone therapy and exercise, however, are less clear. We, therefore, examined the effects of hormone therapy on bone turnover markers in postmenopausal women undergoing regular high intensity exercise. METHODS: In a randomised, double blind study, postmenopausal athletes competing at Masters level, received either hormone therapy (50 μg transdermal oestradiol, 5 mg MPA, n = 8) or placebo (n = 7) for 20 weeks. Women were tested before and after treatment for plasma concentrations of oestradiol, FSH, LH, and serum bone formation marker -osteocalcin (OC); and urine bone resorption markers-pyridinoline (PYD) and deoxypyridinoline (DPD). RESULTS: As a result of treatment with hormone therapy there were significant reductions in levels of FSH (73.3 ± 13.7 to 48.6 ± 10.5 mmol/L, p = 0.01) and bone resorption markers (PYD, 81.9 ± 7.7 to 57.8 ± 3.7 nmol/mmol Cr, p = 0.001, and DPD, 18.5 ± 3.1 to 11.8 ± 2.1 nmol/mmol Cr, p = 0.01). Oestradiol and bone formation markers were not significantly altered as a result of hormone therapy. There were no changes to any variables with placebo treatment. CONCLUSION: Hormone therapy reduced bone resorption, but not bone formation, in postmenopausal athletes. These favorable reductions in bone turnover; therefore, provide an effective treatment in combination with high intensity exercise to further reduce the subsequent risk of osteoporosis and associated fractures
The ARGO-YBJ Experiment Progresses and Future Extension
Gamma ray source detection above 30TeV is an encouraging approach for finding
galactic cosmic ray origins. All sky survey for gamma ray sources using wide
field of view detector is essential for population accumulation for various
types of sources above 100GeV. To target the goals, the ARGO-YBJ experiment has
been established. Significant progresses have been made in the experiment. A
large air shower detector array in an area of 1km2 is proposed to boost the
sensitivity. Hybrid detection with multi-techniques will allow a good
discrimination between different types of primary particles, including photons
and protons, thus enable an energy spectrum measurement for individual specie.
Fluorescence light detector array will extend the spectrum measurement above
100PeV where the second knee is located. An energy scale determined by balloon
experiments at 10TeV will be propagated to ultra high energy cosmic ray
experiments
- …
