1,250 research outputs found

    Preparation and evaluation of advanced electrocatalysts for phosphoric acid fuel cells

    Get PDF
    Results are presented for hydrogen oxidation and hydrogen oxidation poisoned by carbon monoxide at levels between 0 and 30%. Due to the high activities that are now being observed for our platinum based electrocatalysts, the hydrogen concentrations were reduced to 10% levels in the gas supplies. Perturbation techniques were used to determine that a mechanism for the efficient operation of our porous gas diffusion electrodes is diffusion of the carbon monoxide out of the electrode structure through the electrolyte film on the electro-catalyst. A survey of the literature on platinum group materials (PGM) was carried out so that an identification of successful electrocatalysts could be made. Two PGM electrocatalysts were prepared and performance data for hydrogen oxidation in hot phosphoric acid in the presence of high carbon monoxide concentrations showed that they matched the best platinum on carbon electrocatalysts but with an electrocatalyst cost that was half of the platinum catalyst cost

    Preparation and evaluation of advanced electrocatalysts for phosphoric acid fuel cells

    Get PDF
    Two cooperative phenomena are required the development of highly efficient porous electrocatalysts: (1) is an increase in the electrocatalytic activity of the catalyst particle; and (2) is the availability of that electrocatalyst particle for the electromechanical reaction. The two processes interact with each other so that improvements in the electrochemical activity must be coupled with improvements in the availability of the electrocatalyst for reaction. Cost effective and highly reactive electrocatalysts were developed. The utilization of the electrocatalyst particles in the porous electrode structures was analyzed. It is shown that a large percentage of the electrocatalyst in anode structures is not utilized. This low utilization translates directly into a noble metal cost penalty for the fuel cell

    Preparation and evaluation of advanced catalysts for phosphoric acid fuel cells

    Get PDF
    The platinum electrocatalysts were characterized for their crystallite sizes and the degree of dispersion on the carbon supports. One application of these electrocatalysts was for anodic oxidation of hydrogen in hot phosphoric acid fuel cells, coupled with the influence of low concentrations of carbon monoxide in the fuel gas stream. In a similar way, these platinum on carbon electrocatalysts were evaluated for oxygen reduction in hot phosphoric acid. Binary noble metal alloys were prepared for anodic oxidation of hydrogen and noble metal-refractory metal mixtures were prepared for oxygen reduction. An exemplar alloy of platinum and palladium (50/50 atom %) was discovered for anodic oxidation of hydrogen in the presence of carbon monoxide, and patent disclosures were submitted. For the cathode, platinum-vanadium alloys were prepared showing improved performance over pure platinum. Preliminary experiments on electrocatalyst utilization in electrode structures showed low utilization of the noble metal when the electrocatalyst loading exceeded one weight percent on the carbon

    Measuring Inaccessible Residual Stresses Using Multiple Methods and Superposition

    Get PDF
    The traditional contour method maps a single component of residual stress by cutting a body carefully in two and measuring the contour of the cut surface. The cut also exposes previously inaccessible regions of the body to residual stress measurement using a variety of other techniques, but the stresses have been changed by the relaxation after cutting. In this paper, it is shown that superposition of stresses measured post-cutting with results from the contour method analysis can determine the original (pre-cut) residual stresses. The general superposition theory using Bueckner’s principle is developed and limitations are discussed. The procedure is experimentally demonstrated by determining the triaxial residual stress state on a cross section plane. The 2024- T351 aluminum alloy test specimen was a disk plastically indented to produce multiaxial residual stresses. After cutting the disk in half, the stresses on the cut surface of one half were determined with X-ray diffraction and with hole drilling on the other half. To determine the original residual stresses, the measured surface stresses were superimposed with the change stress calculated by the contour method. Within uncertainty, the results agreed with neutron diffraction measurements taken on an uncut disk

    Chandra Observation of Abell 2142: Survival of Dense Subcluster Cores in a Merger

    Get PDF
    We use Chandra data to map the gas temperature in the central region of the merging cluster A2142. The cluster is markedly nonisothermal; it appears that the central cooling flow has been disturbed but not destroyed by a merger. The X-ray image exhibits two sharp, bow-shaped, shock-like surface brightness edges or gas density discontinuities. However, temperature and pressure profiles across these edges indicate that these are not shock fronts. The pressure is reasonably continuous across these edges, while the entropy jumps in the opposite sense to that in a shock (i.e. the denser side of the edge has lower temperature, and hence lower entropy). Most plausibly, these edges delineate the dense subcluster cores that have survived a merger and ram pressure stripping by the surrounding shock-heated gas.Comment: Latex, 9 pages, 5 figures (including color), uses emulateapj.sty. Submitted to Ap

    Hormone Therapy Reduces Bone Resorption but not Bone Formation in Postmenopausal Athletes

    Get PDF
    INTRODUCTION: Independently, hormone therapy and exercise have well-established protective effects on bone parameters. The combined effects of hormone therapy and exercise, however, are less clear. We, therefore, examined the effects of hormone therapy on bone turnover markers in postmenopausal women undergoing regular high intensity exercise. METHODS: In a randomised, double blind study, postmenopausal athletes competing at Masters level, received either hormone therapy (50 μg transdermal oestradiol, 5 mg MPA, n = 8) or placebo (n = 7) for 20 weeks. Women were tested before and after treatment for plasma concentrations of oestradiol, FSH, LH, and serum bone formation marker -osteocalcin (OC); and urine bone resorption markers-pyridinoline (PYD) and deoxypyridinoline (DPD). RESULTS: As a result of treatment with hormone therapy there were significant reductions in levels of FSH (73.3 ± 13.7 to 48.6 ± 10.5 mmol/L, p = 0.01) and bone resorption markers (PYD, 81.9 ± 7.7 to 57.8 ± 3.7 nmol/mmol Cr, p = 0.001, and DPD, 18.5 ± 3.1 to 11.8 ± 2.1 nmol/mmol Cr, p = 0.01). Oestradiol and bone formation markers were not significantly altered as a result of hormone therapy. There were no changes to any variables with placebo treatment. CONCLUSION: Hormone therapy reduced bone resorption, but not bone formation, in postmenopausal athletes. These favorable reductions in bone turnover; therefore, provide an effective treatment in combination with high intensity exercise to further reduce the subsequent risk of osteoporosis and associated fractures

    The ARGO-YBJ Experiment Progresses and Future Extension

    Full text link
    Gamma ray source detection above 30TeV is an encouraging approach for finding galactic cosmic ray origins. All sky survey for gamma ray sources using wide field of view detector is essential for population accumulation for various types of sources above 100GeV. To target the goals, the ARGO-YBJ experiment has been established. Significant progresses have been made in the experiment. A large air shower detector array in an area of 1km2 is proposed to boost the sensitivity. Hybrid detection with multi-techniques will allow a good discrimination between different types of primary particles, including photons and protons, thus enable an energy spectrum measurement for individual specie. Fluorescence light detector array will extend the spectrum measurement above 100PeV where the second knee is located. An energy scale determined by balloon experiments at 10TeV will be propagated to ultra high energy cosmic ray experiments
    corecore