1,663 research outputs found
Can mutation and selection explain virulence in human P. falciparum infections?
BACKGROUND: Parasites incur periodic mutations which must ultimately be eliminated to maintain their genetic integrity. METHODS: It is hypothesised that these mutations are eliminated not by the conventional mechanisms of competition between parasites in different hosts but primarily by competition between parasites within the same infection. RESULTS: This process is enhanced by the production of a large number of parasites within individual infections, and this may significantly contribute to parasitic virulence. CONCLUSIONS: Several features of the most virulent human malaria parasite Plasmodium falciparum can usefully be re-interpreted in this light and lend support to this interpretation. More generally, it constitutes a novel explanation for the evolution of virulence in a wider range of microparasites
Local Manipulation of Nuclear Spin in a Semiconductor Quantum Well
The shaping of nuclear spin polarization profiles and the induction of
nuclear resonances are demonstrated within a parabolic quantum well using an
externally applied gate voltage. Voltage control of the electron and hole wave
functions results in nanometer-scale sheets of polarized nuclei positioned
along the growth direction of the well. RF voltages across the gates induce
resonant spin transitions of selected isotopes. This depolarizing effect
depends strongly on the separation of electrons and holes, suggesting that a
highly localized mechanism accounts for the observed behavior.Comment: 18 pages, 4 figure
Efficacy of galcanezumab in patients with migraine and history of failure to 3-4 preventive medication categories: subgroup analysis from CONQUER study
Background:
Chronic migraine (CM) and episodic migraine (EM) are associated with substantial headache-related disability, poor quality of life and global societal burden. In this subgroup analysis from the CONQUER study, we report efficacy outcomes from a pre-specified analysis of galcanezumab versus placebo in patients with CM or EM and 3–4 prior preventive medication category failures due to inadequate efficacy (after at least 2 months at maximum tolerated dose), or safety or tolerability reasons. The patient population is of particular interest due to evidence of decreased quality of life and increased economic burden among patients with migraine that is inadequately managed and is of interest to decision-makers globally.
Methods:
Key outcomes included overall mean change from baseline in monthly migraine headache days and proportions of patients achieving ≥30% (CM), ≥50%, and ≥ 75% reduction (response rates) in monthly migraine headache days across Months 1–3. Patient functioning and disability were evaluated at Month 3.
Results:
Of the 462 randomized patients, 186 (40.3%) had a history of 3–4 preventive category failures. Galcanezumab versus placebo resulted in significantly (P ≤ .001) larger overall mean reduction in monthly migraine headache days (total: − 5.49 versus − 1.03; CM: − 6.70 versus − 1.56; EM: − 3.64 versus − 0.65). Similarly, the ≥50% response rate was significantly (P ≤ .001) higher with galcanezumab versus placebo (total: 41.0 versus 12.7; CM: 41.5 versus 8.4; EM: 41.1 versus 16.5). In the CM group, the ≥30% response rate was significantly higher in the galcanezumab group than the placebo group (CM, 57.5 versus 19.8, P ≤ .0001) as was the ≥75% response rate (13.3 versus 2.6, P ≤ .05). Galcanezumab also resulted in significant (P < .0001) improvements in patient functioning and reductions in disability.
Conclusions:
Galcanezumab was effective in a difficult-to-treat population of patients with CM or EM who had failed 3–4 prior preventive medication categories
Genomics knowledge and attitudes among European public health professionals. Results of a cross-sectional survey
Background The international public health (PH) community is debating the opportunity to incorporate genomic technologies into PH practice. A survey was conducted to assess attitudes of the European Public Health Association (EUPHA) members towards their role in the implementation of public health genomics (PHG), and their knowledge and attitudes towards genetic testing and the delivery of genetic services. Methods EUPHA members were invited via monthly newsletter and e-mail to take part in an online survey from February 2017 to January 2018. A descriptive analysis of knowledge and attitudes was conducted, along with a univariate and multivariate analysis of their determinants. Results Five hundred and two people completed the questionnaire, 17.9% were involved in PHG activities. Only 28.9% correctly identified all medical conditions for which there is (or not) evidence for implementing genetic testing; over 60% thought that investing in genomics may divert economic resources from social and environmental determinants of health. The majority agreed that PH professionals may play different roles in incorporating genomics into their activities. Better knowledge was associated with positive attitudes towards the use of genetic testing and the delivery of genetic services in PH (OR = 1.48; 95% CI 1.01–2.18). Conclusions Our study revealed quite positive attitudes, but also a need to increase awareness on genomics among European PH professionals. Those directly involved in PHG activities tend to have a more positive attitude and better knowledge; however, gaps are also evident in this group, suggesting the need to harmonize practice and encourage greater exchange of knowledge among professionals
Single-chain factor XII exhibits activity when complexed to polyphosphate
© 2014 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.Peer reviewedPublisher PD
Quantum-dot spin qubit and hyperfine interaction
We review our investigation of the spin dynamics for two electrons confined
to a double quantum dot under the influence of the hyperfine interaction
between the electron spins and the surrounding nuclei. Further we propose a
scheme to narrow the distribution of difference in polarization between the two
dots in order to suppress hyperfine induced decoherence.Comment: 12 pages, 3 figures; Presented as plenary talk at the annual DPG
meeting 2006, Dresden (to appear in Advances in Solid State Physics vol. 46,
2006
Land surface phenological response to decadal climate variability across Australia using satellite remote sensing
© 2014 Author(s). Land surface phenological cycles of vegetation greening and browning are influenced by variability in climatic forcing. Quantitative spatial information on phenological cycles and their variability is important for agricultural applications, wildfire fuel accumulation, land management, land surface modeling, and climate change studies. Most phenology studies have focused on temperature-driven Northern Hemisphere systems, where phenology shows annually recurring patterns. However, precipitation-driven non-annual phenology of arid and semi-arid systems (i.e., drylands) received much less attention, despite the fact that they cover more than 30% of the global land surface. Here, we focused on Australia, a continent with one of the most variable rainfall climates in the world and vast areas of dryland systems, where a detailed phenological investigation and a characterization of the relationship between phenology and climate variability are missing. To fill this knowledge gap, we developed an algorithm to characterize phenological cycles, and analyzed geographic and climate-driven variability in phenology from 2000 to 2013, which included extreme drought and wet years. We linked derived phenological metrics to rainfall and the Southern Oscillation Index (SOI). We conducted a continent-wide investigation and a more detailed investigation over the Murray-Darling Basin (MDB), the primary agricultural area and largest river catchment of Australia. Results showed high inter-and intra-annual variability in phenological cycles across Australia. The peak of phenological cycles occurred not only during the austral summer, but also at any time of the year, and their timing varied by more than a month in the interior of the continent. The magnitude of the phenological cycle peak and the integrated greenness were most significantly correlated with monthly SOI within the preceding 12 months. Correlation patterns occurred primarily over northeastern Australia and within the MDB, predominantly over natural land cover and particularly in floodplain and wetland areas. Integrated greenness of the phenological cycles (surrogate of vegetation productivity) showed positive anomalies of more than 2 standard deviations over most of eastern Australia in 2009-2010, which coincided with the transition from the El Niño-induced decadal droughts to flooding caused by La Niña
Electron spin relaxation by nuclei in semiconductor quantum dots
We have studied theoretically the electron spin relaxation in semiconductor
quantum dots via interaction with nuclear spins. The relaxation is shown to be
determined by three processes: (i) -- the precession of the electron spin in
the hyperfine field of the frozen fluctuation of the nuclear spins; (ii) -- the
precession of the nuclear spins in the hyperfine field of the electron; and
(iii) -- the precession of the nuclear spin in the dipole field of its nuclear
neighbors. In external magnetic fields the relaxation of electron spins
directed along the magnetic field is suppressed. Electron spins directed
transverse to the magnetic field relax completely in a time on the order of the
precession period of its spin in the field of the frozen fluctuation of the
nuclear spins. Comparison with experiment shows that the hyperfine interaction
with nuclei may be the dominant mechanism of electron spin relaxation in
quantum dots
Coulomb "blockade" of Nuclear Spin Relaxation in Quantum Dots
We study the mechanism of nuclear spin relaxation in quantum dots due to the
electron exchange with 2D gas. We show that the nuclear spin relaxation rate is
dramatically affected by the Coulomb blockade and can be controlled by gate
voltage. In the case of strong spin-orbit coupling the relaxation rate is
maximal in the Coulomb blockade valleys whereas for the weak spin-orbit
coupling the maximum of the nuclear spin relaxation rate is near the Coulomb
blockade peaks.Comment: 4 pages, 3 figure
Goldstone Mode Relaxation in a Quantum Hall Ferromagnet due to Hyperfine Interaction with Nuclei
Spin relaxation in quantum Hall ferromagnet regimes is studied. As the
initial non-equilibrium state, a coherent deviation of the spin system from the
direction is considered and the breakdown of this Goldstone-mode
state due to hyperfine coupling to nuclei is analyzed. The relaxation occurring
non-exponentially with time is studied in terms of annihilation processes in
the "Goldstone condensate" formed by "zero spin excitons". The relaxation rate
is calculated analytically even if the initial deviation is not small. This
relaxation channel competes with the relaxation mechanisms due to spin-orbit
coupling, and at strong magnetic fields it becomes dominating.Comment: 8 page
- …