1,444 research outputs found

    The DEEP2 Galaxy Redshift Survey: Discovery of Luminous, Metal-poor, Sta r-forming Galaxies at Redshifts z~0.7

    Full text link
    We have discovered a sample of 17 metal-poor, yet luminous, star-forming galaxies at redshifts z~0.7. They were selected from the initial phase of the DEEP2 survey of 3900 galaxies and the Team Keck Redshift Survey (TKRS) of 1536 galaxies as those showing the temperature-sensitive [OIII]l4363 auroral line. These rare galaxies have blue luminosities close to L*, high star formation rates of 5 to 12 solar masses per year, and oxygen abundances of 1/3 to 1/10 solar. They thus lie significantly off the luminosity-metallicity relation found previously for field galaxies with strong emission lines at redshifts z~0.7. The prior surveys relied on indirect, empirical calibrations of the R23 diagnostic and the assumption that luminous galaxies are not metal-poor. Our discovery suggests that this assumption is sometimes invalid. As a class, these newly-discovered galaxies are: (1) more metal-poor than common classes of bright emission-line galaxies at z~0.7 or at the present epoch; (2) comparable in metallicity to z~3 Lyman Break Galaxies but less luminous; and (3) comparable in metallicity to local metal-poor eXtreme Blue Compact Galaxies (XBCGs), but more luminous. Together, the three samples suggest that the most-luminous, metal-poor, compact galaxies become fainter over time.Comment: This is a .tgz file. It should create the following files: texto.tex, tab1.tex, f1.eps and f2.eps. The LaTeX style used is emulateapj.cls, version November 26, 2004. This submission is 5 pages long, one table and two figures. To appear in ApJ

    Chemical Evolution of Galaxies

    Get PDF
    Chemical evolution of galaxies brings together ideas on stellar evolution and nucleosynthesis with theories of galaxy formation, star formation and galaxy evolution, with all their associated uncertainties. In a new perspective brought about by the Hubble Deep Field and follow-up investigations of global star formation rates, diffuse background etc., it has become necessary to consider the chemical composition of dark baryonic matter as well as that of visible matter in galaxies.Comment: 6 pages, AAS LaTeX macros v5.0, Millennium Essay to appear in PASP, Feb 200

    Cu based patch antenna on polymer substrate for flexible wireless sensor systems applications

    Get PDF
    AbstractIn this work we designed, simulated and developed a flexible 10 GHz patch antenna using standard microsystem technology. Liquid crystal polymer (LCP) is used as substrate and Copper (Cu) as metallization thin film. LCP and Cu are best suited for high frequency applications because of their excellent electrical properties such as resistivity and dielectric constant. To protect the antenna it is passivated and encapsulated with parylene C. Parylene C was deposited at room temperature using standard Gorham system. The effect of Cu metallization and parylene C passivation on antenna indicator parameters such as resonance frequency, input reflection coefficient, bandwidth and gain are investigated. Furthermore the specific resistance of Cu lines on LCP substrates is investigated

    A dynamical model of surrogate reactions

    Full text link
    A new dynamical model is developed to describe the whole process of surrogate reactions; transfer of several nucleons at an initial stage, thermal equilibration of residues leading to washing out of shell effects and decay of populated compound nuclei are treated in a unified framework. Multi-dimensional Langevin equations are employed to describe time-evolution of collective coordinates with a time-dependent potential energy surface corresponding to different stages of surrogate reactions. The new model is capable of calculating spin distributions of the compound nuclei, one of the most important quantity in the surrogate technique. Furthermore, various observables of surrogate reactions can be calculated, e.g., energy and angular distribution of ejectile, and mass distributions of fission fragments. These features are important to assess validity of the proposed model itself, to understand mechanisms of the surrogate reactions and to determine unknown parameters of the model. It is found that spin distributions of compound nuclei produced in 18^{18}O+238^{238}U 16\rightarrow ^{16}O+240^{240*}U and 18^{18}O+236^{236}U 16\rightarrow ^{16}O+238^{238*}U reactions are equivalent and much less than 10\hbar, therefore satisfy conditions proposed by Chiba and Iwamoto (PRC 81, 044604(2010)) if they are used as a pair in the surrogate ratio method.Comment: 17 pages, 5 figure

    Dynamics of Myoblast Transplantation Reveal a Discrete Minority of Precursors with Stem Cell–like Properties as the Myogenic Source

    Get PDF
    Myoblasts, the precursors of skeletal muscle fibers, can be induced to withdraw from the cell cycle and differentiate in vitro. Recent studies have also identified undifferentiated subpopulations that can self-renew and generate myogenic cells (Baroffio, A., M. Hamann, L. Bernheim, M.-L. Bochaton-Pillat, G. Gabbiani, and C.R. Bader. 1996. Differentiation. 60:47–57; Yoshida, N., S. Yoshida, K. Koishi, K. Masuda, and Y. Nabeshima. 1998. J. Cell Sci. 111:769–779). Cultured myoblasts can also differentiate and contribute to repair and new muscle formation in vivo, a capacity exploited in attempts to develop myoblast transplantation (MT) for genetic modification of adult muscle. Our studies of the dynamics of MT demonstrate that cultures of myoblasts contain distinct subpopulations defined by their behavior in vitro and divergent responses to grafting. By comparing a genomic and a semiconserved marker, we have followed the fate of myoblasts transplanted into muscles of dystrophic mice, finding that the majority of the grafted cells quickly die and only a minority are responsible for new muscle formation. This minority is behaviorally distinct, slowly dividing in tissue culture, but rapidly proliferative after grafting, suggesting a subpopulation with stem cell–like characteristics

    Self-similar signature of the active solar corona within the inertial range of solar-wind turbulence

    Get PDF
    We quantify the scaling of magnetic energy density in the inertial range of solar-wind turbulence seen in situ at 1 AU with respect to solar activity. At solar maximum, when the coronal magnetic field is dynamic and topologically complex, we find self-similar scaling in the solar wind, whereas at solar minimum, when the coronal fields are more ordered, we find multifractality. This quantifies the solar-wind signature that is of direct coronal origin and distinguishes it from that of local MHD turbulence, with quantitative implications for coronal heating of the solar wind
    corecore