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Self-similar signature of the active solar corona within the inertial range of solar wind

turbulence
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We quantify the scaling of magnetic energy density in the inertial range of solar wind turbulence
seen in-situ at 1AU with respect to solar activity. At solar maximum, when the coronal magnetic
field is dynamic and topologically complex, we find self-similar scaling in the solar wind, whereas at
solar mimimum, when the coronal fields are more ordered, we find multifractality. This quantifies
the solar wind signature that is of direct coronal origin, and distinguishes it from that of local MHD
turbulence, with quantitative implications for coronal heating of the solar wind.

PACS numbers: 96.60.P–, 96.50.Ci, 94.05.Lk, 47.53.+n

The interplanetary solar wind exhibits fluctuations
characteristic of Magnetohydrodynamic (MHD) turbu-
lence evolving in the presence of structures of coronal ori-
gin. In-situ spacecraft observations of plasma parameters
are at minute (or below) resolution for intervals spanning
the solar cycle, and provide a large number of samples
for statistical studies. These reveal a magnetic Reynolds
number ∼ 105 [1] and power spectra with a clear inertial
range over several orders of magnitude characterised by a
power law Kolmogorov exponent of ∼ −5/3. Quantifying
the properties of fluctuations in the solar wind can thus
provide insights into MHD turbulence and also inform
our understanding of coronal processes and ultimately,
the mechanisms by which the solar wind is heated. Quan-
tifying these fluctuations is also central to understanding
the propagation of cosmic rays in the heliosphere [2].

Coronal heating mechanisms are studied in terms of
the scaling properties of coronal structures [3, 4], heat-
ing rates [5] and diffusion via random walks of magnetic
field lines [6], all of which suggest self-similar processes.
The solar wind is also studied in-situ to infer informa-
tion pertaining to coronal processes. Large scale coherent
structures of solar origin, such as CMEs, can be directly
identified in the solar wind. At frequencies below the
‘Kolmogorov- like’ inertial range, the solar wind exhibits
an energy containing range which shows ∼ 1/f scaling
[7] [8]. Solar flares show scale invariance in their en-
ergy release statistics over several orders of magnitude
[9] which has been discussed in terms of Self-Organized
Criticality (SOC) [10, 11]. Within the inertial range, the
observed solar wind magnetic fluctuations are principally
Alfvénic in character with asymmetric propagation anti-
sunwards [12]. In-situ plasma parameters which directly
relate to cascade theories of ideal incompressible MHD
turbulence, such as velocity, magnetic field, and the El-
sasser variables have thus been extensively studied in the
solar wind ([13] and refs. therein). These show multi-
fractal scaling in their higher order moments consistent

with intermittent turbulence [14, 15]. Intriguingly, the
magnetic energy density B2 and number density ρ show
approximately self-similar scaling in the inertial range
[16, 17]. These parameters are insensitive to Alfvénicity,
and do not relate directly to MHD cascade theories.

In this Letter we quantify the scaling seen in B2 in the
inertial range of solar wind turbulence with respect to
coronal structure and dynamics. We employ a recently
developed technique [18] that sensitively distinguishes
between self-similarity and multifractality in timeseries.
This will allow us to distinguish and quantify the solar
wind signature that is of direct coronal origin from that of
local MHD turbulence, with quantitative implications for
our understanding of coronal heating of the solar wind.

The WIND and ACE spacecraft spend extended inter-
vals at ∼1 AU in the ecliptic and provide in-situ magnetic
field observations of the solar wind over extended peri-
ods covering all phases of the solar cycle. We focus on
a comparison between solar maximum when the coronal
structure is highly variable with topologically complex
magnetic structure, with that at solar minimum when the
coronal magnetic structure is highly ordered. The most
magnetically ordered region of the corona is at the poles
at solar minimum and observations of the correspond-
ing quiet, fast solar wind are provided by the ULYSSES
spacecraft. The four data sets,[27], that we consider here
are then a.) WIND 60 seconds averaged MFI data at the
solar maximum year of 2000 and b.) at the solar min-
imum year of 1996; c.) ACE 64 seconds averaged MFI
data for the year 2000; and d.) ULYSSES 60 seconds
averaged VHM/FGM data for July and August 1995.
Data sets a–c consist of ∼ 4.5 × 105 points; and d con-
sists of ∼ 8.5 × 104 data points. Intervals corresponding
to magnetospheric bow shock crossings for WIND were
removed by comparison with [28]. The ACE spacecraft
orbits around the Earth-Sun L1 point and the ULYSSES
data was obtained for the North polar pass of 1995. All
of the above intervals show a ∼ −5/3 power law scaling
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inertial range in the power spectra of |B| over several
decades which is indicative of a well developed turbulent
fluid.

We can access the statistical scaling properties of a
timeseries by constructing differences y(t, τ) = |B(t +
τ)|2−|B(t)|2 on all available time intervals τ . The statis-
tical scaling with τ can be seen in the structure functions
of order m which follows that of the moments of the PDF
of y, P (y, τ):

Sm(τ) = 〈|y|
m
〉 =

∫
∞

−∞

|y|
m

P (y, τ)dy , (1)

where 〈〉 indicate ensemble averaging over t. Statistical
self-similarity implies that any PDF at scale τ can be
collapsed onto a unique single variable PDF Ps:

P (y, τ) = τ−HPs(τ
−Hy) , (2)

where H is the Hurst exponent. Equation (2) implies
that the increments y are self-affine i.e. they obey the

statistical scaling equality y(bτ)
d
= bHy(τ) , such that the

structure functions will scale with τ as

Sm(τ) = τζ(m)Sm
s (1) . (3)

For the special case of a statistically self-similar (ran-
dom fractal) process, ζ(m) = Hm. This scaling with
H = 1/3 is characteristic of Kolmogorov’s 1941 theory
of turbulence [19], and intermittency corrections to this
are modelled by quadratic and concave ζ(m) (multifrac-
tals) [20]. A difficulty that can arise in the experimen-
tal determination of the ζ(m) is that for a finite length
timeseries, the integral (1) is not sampled over the range
(−∞, +∞); the outlying measured values of y determine
the limits. In the case of a heavy-tailed PDF the higher
order moments (larger m) can yield a ζ(m) that deviates
strongly from the scaling of P (y, τ) in (2) [18] (hereafter
KCH). An operational solution to this was demonstrated
in KCH for a self-similar process. Essentially one sys-
tematically excludes a minimal percentage of the outly-
ing events y from the integral in (1) so that the statistics
of the PDF tails become well sampled and the integral
(1) yields a τ dependence with the correct scaling of the
self-similar process (2). This method is sensitive in dis-
tinguishing self-affine scaling from weak multifractality.
We illustrate this with two reference models: the first
of which is manifestly self-similar, an α-stable Lévy pro-
cess of index α = 1.0 (H = 1/α) [18]; and the second,
manifestly multifractal, i.e. a p-model [21] with p = 0.6.
These synthetic data sets each consist of 106 data points.
Figure 1 shows plots of the exponents ζ(m) Vs. m ob-
tained from (3) by computing the gradients of log Sm(τ)
for (a) the Lévy process and (b) the multifractal model
respectively. The exponents ζ(p) have been recomputed
as outlying data points are successively removed, and we
can see that removing a small fraction, ∼ 0.001% of the

data leads to a large change in the computed ζ(p). A
reliable estimate of the exponents from the data requires
rapid convergence to robust values; shown in KCH to be
a property of self-affine timeseries. We can see this be-
haviour in the Lévy model which quickly converges to
linear dependence of ζ(p) with p as expected.
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Figure 1: ζ(m) Vs. m plots for a.) α = 1.0 symmetric Lévy
process and b.) p = 0.6 p-model process.

The multifractal p-model only begins to approach lin-
earity after ∼ 3% of the data is excluded. This apparent
linearity in the p-model is actually a divergence in the
values of the ζ(p). We see this behaviour if we plot the
value of one of the exponents from Figure 1 versus the
percentage of points removed. This is shown for ζ(2) for
the Lévy process (upper panel) and the p-model (lower
panel) in Figure 2. As we successively exclude outlying
data points, the self-affine Lévy process quickly reaches
a constant value for ζ(2) = 2/α = 2.0 whereas for the
multifractal, the ζ(2) exponent shows a continuing sec-
ular drift. Importantly, successively removing outlying
data points does not convert the multifractal p-model
timeseries into a self-affine process. In addition, a plot
of ζ(p) versus p (Figure 1) is not sufficient to distinguish
self-affine from multifractal behaviour, one also needs to
examine the convergence properties of the exponents as
outlying points are successively removed, as shown in
Figure 2.

We now turn to the analysis of solar wind data. In
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Figure 2: Exponent of the second moment ζ(2) Vs. the per-
centage of points excluded for a.) the Lévy model and b.)
p-model.
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Figure 3: Exponent of the second moment ζ(2) Vs. the per-
centage of points excluded for a.) WIND and ACE at solar
maximum and b.) WIND at solar minimum.
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Figure 4: Exponent of the second moment ζ(2) Vs. the per-
centage of points excluded for ULYSSES at solar minimum.

Figures 3a and b we plot ζ(2) versus the percentage of
points removed in B2 for intervals at solar maximum and
minimum respectively. The ζ values for these plots were
obtained from an identified scaling range which spanned
from ∼ 5.2 minutes to ∼ 2.7 hours (see e.g. [16, 22]
). Comparison of these plots with Figure 2 strongly
suggests that at solar maximum, the magnetic energy
density is self-affine; we can clearly identify a plateau
with a H = ζ(2)/2 value of H ≃ 0.44 ± 0.02 for WIND
and H ≃ 0.45 ± 0.01 for ACE. At solar minimum, there
is no clear plateau and the behaviour is reminiscent of
the multifractal p-model. We have thus differentiated
the distinct scaling behaviour at solar maximum and so-
lar minimum. Intriguingly, it is at solar maximum that
we see self-similar behaviour; whereas at solar minimum
the timeseries resembles a multifractal, reminiscent of in-
termittent turbulence. Since the corona is complex and
highly structured at solar maximum, this is highly sug-
gestive that this self-similar signature in B2 is related
to coronal structure and dynamics rather than to local
turbulence.

We can test this conjecture by considering observations
of the solar wind where the coronal structure is maxi-
mally ordered. We repeat the above analysis on a two
month interval of ULYSSES data during solar minimum.
The resulting plot of ζ(2) versus percentage of points
excluded is shown in Figure 4. This plot again does not
support self-affine scaling and is reminiscent of that of the
p-model, strengthening previous results [15, 23]. Clearly,
the behaviour of B2 in the solar wind originating from
a corona dominated by ordered open field lines is not
self-affine. The appearance of fractal versus multifractal
behaviour in B2 is not a strong discriminator of vari-
ability in the average solar wind speed per se. We see
multifractal scaling both in the ecliptic at minimum in
an interval that contains periods of alternating high and
low speed streams, and at the poles, where the average
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speed is fast and uniform. We see fractal scaling in the
ecliptic at maximum, where the average speed also alter-
nates between fast and slow streams. Previous studies
[23] have shown a variation with latitude and solar cycle
of the level of multifractality of components of magnetic
field. This may be related to the signature of the level of
complexity in coronal magnetic structure which we have
identified in B2 within the inertial range of turbulence,
but may also simply reflect a correlation with average so-
lar wind speed. We have also verified that |B| does not
show evidence of self-similarity for the intervals chosen
for our study. More specifically |B| exhibits multifractal
behaviour. This confirms the earlier results of Hnat et.

al. [22].

The corona contains many long-lived structures which
extend far out into the solar system mediated by the
interplanetary solar wind [4]. At solar maximum these
structures show a high degree of topological complexity.
One model for these structures and their propagation is
as a random walk or braiding of magnetic field lines with
a measurable diffusion coefficient [2, 6, 24]. A diffusion
process such as this intrinsically generates self-similar
scaling, and may in a straightforward manner account for
that shown here in B2 at solar maximum. Alternatively,
the relevant process may be that of reconnection in the
complex magnetic structure of the emerging coronal flux.
Models for this include SOC based random networks [11]
which again imply self-similar scaling. Our quantitative
determination of the Hurst exponent H ≃ 0.45 of the
self-affine scaling seen in the solar wind provides a strong
constraint to these models.

The PDF resulting from such a self-similar process can
be captured by a solution to a generalized Fokker-Planck
equation (FPE) with power law scaling of the transport
coefficients [17, 22]. Intriguingly, the associated Langevin
equation transforms nonlinearly into that for a constant
diffusion coefficient. The transformation may be equiva-
lent to introducing a diffusion process with constant dif-
fusion coefficient, on a space with non-Euclidean, self-
similar, fractal geometry. This may provide a quanti-
tative basis for models of transport of initially random
fractal fields (the coronal source) in a turbulent flow (the
solar wind). At solar minimum we see quite a differ-
ent picture. Here the corona is topologically well or-
dered magnetically. Thus in this case the fluctuations
in B2 are dominated by the evolving turbulence of the
interplanetary solar wind which is well known to exhibit
multifractal behaviour. Intriguingly, this self-affine sig-
nature quantified here in B2 extends over the ∼ −5/3
exponent inertial range seen in the solar wind. This is at
higher frequencies than the ∼ 1/f behaviour previously
identified as a coronal signature in the solar wind [8].
Although models involving reconnection and flares and
nanoflares have been proposed [25], estimates of the to-
tal energy contained in such structures falls significantly
short of that required for coronal heating [26]. Thus the

high-frequency self-similarity reported here may suggest
further processes responsible for coronal heating.
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