14,195 research outputs found

    A design study of hydrazine and biowaste resistojets

    Get PDF
    A generalized modeling program was adapted in BASIC on a personal computer to compare the performance of four types of biowaste resistojets and two types of hydrazine augmenters. Analyzed biowaste design types were: (1) an electrically conductive ceramic heater-exchanger of zirconia; (2) a truss heater of platinum in cross flow; (3) an immersed bicoiled tubular heater-exchanger; and (4) a nonexposed, refractory metal, radiant heater in a central cavity within a heat exchanger case. Concepts 2 and 3 are designed to have an efficient, stainless steel outer pressure case. The hydrazine design types are: (5) an immersed bicoil heater exchanger and (6) a nonexposed radiant heater now with a refractory metal case. The ceramic biowaste resistojet has the highest specific impulse growth potential at 2000 K of 192.5 (CO2) and 269 s (H2O). The bicoil produces the highest augmenter temperature of 1994 K for a 2073 K heater giving 317 s at .73 overall efficiency. Detailed temperature profiles of each of the designs are shown. The scaled layout drawings of each are presented with recommended materials and fabrication methods

    A new solid-state logarithmic radiometer

    Get PDF
    Combination of temperature-compensated logarithmic amplifiers and p-i-n photodiodes operating in zero-bias mode provides lightweight radiometer for detecting spectral intensities encompassing more than three decades over a range of at least 300 to 800 nanometers at low power levels

    Evaporation of a Kerr black hole by emission of scalar and higher spin particles

    Get PDF
    We study the evolution of an evaporating rotating black hole, described by the Kerr metric, which is emitting either solely massless scalar particles or a mixture of massless scalar and nonzero spin particles. Allowing the hole to radiate scalar particles increases the mass loss rate and decreases the angular momentum loss rate relative to a black hole which is radiating nonzero spin particles. The presence of scalar radiation can cause the evaporating hole to asymptotically approach a state which is described by a nonzero value of a∗≡a/Ma_* \equiv a / M. This is contrary to the conventional view of black hole evaporation, wherein all black holes spin down more rapidly than they lose mass. A hole emitting solely scalar radiation will approach a final asymptotic state described by a∗≃0.555a_* \simeq 0.555. A black hole that is emitting scalar particles and a canonical set of nonzero spin particles (3 species of neutrinos, a single photon species, and a single graviton species) will asymptotically approach a nonzero value of a∗a_* only if there are at least 32 massless scalar fields. We also calculate the lifetime of a primordial black hole that formed with a value of the rotation parameter a∗a_{*}, the minimum initial mass of a primordial black hole that is seen today with a rotation parameter a∗a_{*}, and the entropy of a black hole that is emitting scalar or higher spin particles.Comment: 22 pages, 13 figures, RevTeX format; added clearer descriptions for variables, added journal referenc

    Observation of infinite-range intensity correlations above, at and below the 3D Anderson localization transition

    Full text link
    We investigate long-range intensity correlations on both sides of the Anderson transition of classical waves in a three-dimensional (3D) disordered material. Our ultrasonic experiments are designed to unambiguously detect a recently predicted infinite-range C0 contribution, due to local density of states fluctuations near the source. We find that these C0 correlations, in addition to C2 and C3 contributions, are significantly enhanced near mobility edges. Separate measurements of the inverse participation ratio reveal a link between C0 and the anomalous dimension \Delta_2, implying that C0 may also be used to explore the critical regime of the Anderson transition.Comment: 13 pages, 11 figures (main text plus supplemental information). Updated version includes an improved introductory paragraph, minor text revisions, a revised title and additional supplemental information on the experimental detail

    Expression of Contractile Protein Isoforms in Microgravity

    Get PDF
    The general objective of this experiment is to determine the effect of space flight parameters, including microgravity, on ontogenesis and embryogenesis of Japanese quail. Nine U.S. and two Russian investigators are cooperating in this study. Specific objectives of the participating scientists include assessing the gross and microscopic morphological and histological development of the embryo, as well as the temporal and spacial development of specific cells, tissues, and organs. Temporally regulated production of specific proteins is also being investigated. Our objective is to determine the effects of microgravity on developmentally programmed expression of Troponin T and I isoforms known to regulate cardiac and skeletal muscle contraction

    An Updated Ultraviolet Calibration for the Swift/UVOT

    Full text link
    We present an updated calibration of the Swift/UVOT broadband ultraviolet (uvw1, uvm2, and uvw2) filters. The new calibration accounts for the ~1% per year decline in the UVOT sensitivity observed in all filters, and makes use of additional calibration sources with a wider range of colours and with HST spectrophotometry. In this paper we present the new effective area curves and instrumental photometric zeropoints and compare with the previous calibration.Comment: 4 pages, 3 figures, 2 tables. Presented at GRB 2010 symposium, Annapolis, November 2010 to be published in American Institute of Physics Conference Serie

    Spinning Down a Black Hole With Scalar Fields

    Get PDF
    We study the evolution of a Kerr black hole emitting scalar radiation via the Hawking process. We show that the rate at which mass and angular momentum are lost by the black hole leads to a final evolutionary state with nonzero angular momentum, namely a/M≈0.555a/M \approx 0.555.Comment: 4 pages (including 3 postscript figures), Revtex, uses epsf.tex, twocolumn.sty and header.sty (included). Submitted to Physical Review Letter

    No-Bang Quantum State of the Cosmos

    Full text link
    A quantum state of the entire cosmos (universe or multiverse) is proposed which is the equal mixture of the Giddings-Marolf states that are asymptotically single de Sitter spacetimes in both past and future and are regular on the throat or neck of minimal three-volume. That is, states are excluded that have a big bang or big crunch or which split into multiple asymptotic de Sitter spacetimes. (For simplicity, transitions between different values of the cosmological constant are assumed not to occur, though different positive values are allowed.) The entropy of this mixed state appears to be of the order of the three-fourths power of the Bekenstein-Hawking A/4 entropy of de Sitter spacetime. Most of the component pure states do not have rapid inflation, but when an inflaton is present and the states are weighted by the volume at the end of inflation, a much smaller number of states may dominate and give a large amount of inflation and hence may agree with observations.Comment: 18 pages, LaTeX, updated with a few new qualifications and reference

    N terminus is key to the dominant negative suppression of CaV2 calcium channels: implications for episodic ataxia type 2

    Get PDF
    Expression of the calcium channels CaV2.1 and CaV2.2 is markedly suppressed by co-expression with truncated constructs containing Domain I. This is the basis for the phenomenon of dominant negative suppression observed for many of the episodic ataxia type 2 mutations in CaV2.1 that predict truncated channels. The process of dominant negative suppression has been shown previously to stem from interaction between the full-length and truncated channels and to result in downstream consequences of the unfolded protein response and endoplasmic reticulum-associated protein degradation. We have now identified the specific domain that triggers this effect. For both CaV2.1 and CaV2.2, the minimum construct producing suppression was the cytoplasmic N terminus. Suppression was enhanced by tethering the N terminus to the membrane with a CAAX motif. The 11-amino acid motif (including Arg52 and Arg54) within the N terminus, which we have previously shown to be required for G protein modulation, is also essential for dominant negative suppression. Suppression is prevented by addition of an N-terminal tag (XFP) to the full-length and truncated constructs. We further show that suppression of CaV2.2 currents by the N terminus-CAAX construct is accompanied by a reduction in CaV2.2 protein level, and this is also prevented by mutation of Arg52 and Arg54 to Ala in the truncated construct. Taken together, our evidence indicates that both the extreme N terminus and the Arg52, Arg54 motif are involved in the processes underlying dominant negative suppression
    • …
    corecore