1,423 research outputs found

    Edge insulating topological phases in a two-dimensional long-range superconductor

    Full text link
    We study the zero-temperature phase diagram of a two dimensional square lattice loaded by spinless fermions, with nearest neighbor hopping and algebraically decaying pairing. We find that for sufficiently long-range pairing, new phases, not continuously connected with any short-range phase, occur, signaled by the violation of the area law for the Von Neumann entropy, by semi-integer Chern numbers, and by edge modes with nonzero mass. The latter feature results in the absence of single-fermion edge conductivity, present instead in the short- range limit. The definition of a topology in the bulk and the presence of a bulk-boundary correspondence is still suggested for the long-range phases. Recent experimental proposals and advances open the stimulating possibility to probe the described long-range effects in next-future realistic set-ups

    Charge transfer and coherence dynamics of tunnelling system coupled to a harmonic oscillator

    Full text link
    We study the transition probability and coherence of a two-site system, interacting with an oscillator. Both properties depend on the initial preparation. The oscillator is prepared in a thermal state and, even though it cannot be considered as an extended bath, it produces decoherence because of the large number of states involved in the dynamics. In the case in which the oscillator is intially displaced a coherent dynamics of change entangled with oscillator modes takes place. Coherency is however degraded as far as the oscillator mass increases producing a increasingly large recoherence time. Calculations are carried on by exact diagonalization and compared with two semiclassical approximations. The role of the quantum effects are highlighted in the long-time dynamics, where semiclassical approaches give rise to a dissipative behaviour. Moreover, we find that the oscillator dynamics has to be taken into account, even in a semiclassical approximation, in order to reproduce a thermally activated enhancement of the transition probability

    Teleportation on a quantum dot array

    Full text link
    We present a model of quantum teleportation protocol based on a double quantum dot array. The unknown qubit is encoded using a pair of quantum dots, coupled by tunneling, with one excess electron. It is shown how to create maximally entangled states with this kind of qubits using an adiabatically increasing Coulomb repulsion between different pairs. This entangled states are exploited to perform teleportation again using an adiabatic coupling between them and the incoming unknown state. Finally, a sudden separation of Bob's qubit enables a time evolution of Alice's state providing a modified version of standard Bell measurement. Substituting the four quantum dots entangled state with a chain of coupled DQD's, a quantum channel with high fidelity arises from this scheme allowing the transmission over long distances.Comment: 4 pages, 2 figure

    Entanglement properties of spin models in triangular lattices

    Full text link
    The different quantum phases appearing in strongly correlated systems as well as their transitions are closely related to the entanglement shared between their constituents. In 1D systems, it is well established that the entanglement spectrum is linked to the symmetries that protect the different quantum phases. This relation extends even further at the phase transitions where a direct link associates the entanglement spectrum to the conformal field theory describing the former. For 2D systems much less is known. The lattice geometry becomes a crucial aspect to consider when studying entanglement and phase transitions. Here, we analyze the entanglement properties of triangular spin lattice models by considering also concepts borrowed from quantum information theory such as geometric entanglement.Comment: 19 pages, 8 figure

    A case study of spin-11 Heisenberg model in a triangular lattice

    Full text link
    We study the spin-11 model in a triangular lattice in presence of a uniaxial anisotropy field using a Cluster Mean-Field approach (CMF). The interplay between antiferromagnetic exchange, lattice geometry and anisotropy forces Gutzwiller mean-field approaches to fail in a certain region of the phase diagram. There, the CMF yields two supersolid (SS) phases compatible with those present in the spin-1/21/2 XXZ model onto which the spin-11 system maps. Between these two SS phases, the three-sublattice order is broken and the results of the CMF depend heavily on the geometry and size of the cluster. We discuss the possible presence of a spin liquid in this region.Comment: 7 pages, 4 figures, RevTeX 4. The abstract and conclusions have been modified and the manuscript has been extende

    Manipulating mesoscopic multipartite entanglement with atom-light interfaces

    Get PDF
    Entanglement between two macroscopic atomic ensembles induced by measurement on an ancillary light system has proven to be a powerful method for engineering quantum memories and quantum state transfer. Here we investigate the feasibility of such methods for generation, manipulation and detection of genuine multipartite entanglement between mesoscopic atomic ensembles. Our results extend in a non trivial way the EPR entanglement between two macroscopic gas samples reported experimentally in [B. Julsgaard, A. Kozhekin, and E. Polzik, Nature {\bf 413}, 400 (2001)]. We find that under realistic conditions, a second orthogonal light pulse interacting with the atomic samples, can modify and even reverse the entangling action of the first one leaving the samples in a separable state.Comment: 8 pages, 6 figure

    Double dot chain as a macroscopic quantum bit

    Full text link
    We consider an array of N quantum dot pairs interacting via Coulomb interaction between adjacent dots and hopping inside each pair. We show that at the first order in the ratio of hopping and interaction amplitudes, the array maps in an effective two level system with energy separation becoming exponentially small in the macroscopic (large N) limit. Decoherence at zero temperature is studied in the limit of weak coupling with phonons. In this case the macroscopic limit is robust with respect to decoherence. Some possible applications in quantum information processing are discussed.Comment: Phys. Rev. A (in press

    Inhibition of LPS-Induced Inflammatory Response of Oral Mesenchymal Stem Cells in the Presence of Galectin-3

    Get PDF
    Galectin-3 (GAL-3) is a beta-galactoside binding lectin produced by mesenchymal stem cells (MSCs) and other cell sources under inflammatory conditions. Several studies have reported that GAL-3 exerts an anti-inflammatory action, regulated by its natural ligand GAL-3 BP. In the present study, we aimed to assess the GAL-3 mediated regulation of the MSC function in an LPS-induced inflammation setting. Human gingival mesenchymal stem cells (hGMSCs) were stimulated in vitro with LPSs; the expression of TLR4, NFκB p65, MyD88 and NALP3 were assessed in the hGMSCs via immunofluorescence imaging using confocal microscopy, Western blot assay, and RT-PCR before and after the addition of GAL-3, both alone and with the addition of its inhibitors. LPSs stimulated the expression of TLR4, NFκB p65, MyD88 and NALP3 in hGMSCs, which was inhibited by GAL-3. The addition of either GAL3-BP or the antibody to GAL-3 were able to revert the GAL-3-mediated effects, restoring the expression of TLR4, NFκB p65, MyD88 and NALP3. GAL-3 induces the downregulation of the LPS-induced inflammatory program in MSCs

    Long-term changes in a benthic assemblage associated with artificial reefs

    Get PDF
    The aim of the study was to evaluate the long-term development of a hard bottom benthic assemblage over a period of 20 years in an area off the mouth of a large river. The artificial reef of Fregene was selected because benthic assemblage data were available for the period 1981-1992. This artificial reef is located in the mid Tyrrhenian Sea, 5 nautical miles north of the two mouths of the Tevere River (Latium, Italy) and 1.5 nautical miles offshore from Fregene (Rome, Italy). The artificial reef was deployed in March 1981 for fisheries enhancement in 10-14 m of water on a sandy-silty seabed. The Tevere River carries suspended materials and a heavy load of organics since it transports Rome's effluent, resulting in the eutrophic state of area waters. Benthic sampling was conducted in 2001 by SCUBA diving; two standard surfaces of 400 cm 2 were scraped from the vertical walls of the same uppermost block in four different periods. All organisms were identified and counted. The methodology used is the same as that adopted in the previous periods, so that the 2001 data could be compared with past collected data. The benthic assemblage was analysed by cluster analysis using the Bray-Curtis index and clustered using the group average clustering algorithm. The SIMPER procedure was used to identify those taxa that characterize each station group identified by cluster analysis. Changes in benthic assemblages and hydrological trends of the Tevere River were investigated using the cumulative sum series method. The 20-year development of the benthic community, starting from the new substratum, is composed of different phases characterised by different benthic assemblages. In particular five different phases were distinguished: 1. Pioneer species recruitment (May 1981-June 1981); 2. Mytilus galloprovincialis (mussel) dominance (August 1981-November 1983); 3. M. galloprovincialis regression (July 1984-October 1985); 4. M. galloprovincialis absence (91-92); 5. Bryozoans bioconstruction dominance (2001). The dynamic succession of the observed benthic assemblages exhibited a good relation with the Tevere River flow. The Tevere River flow, and the subsequent sedimentation process, seems to have strongly influenced the benthic assemblage succession of the Fregene artificial reef
    • …
    corecore