161 research outputs found

    Natural IgG antibodies to β amyloid are decreased in patients with Parkinson's disease

    Get PDF
    : Natural antibodies (nAbs) against aggregation-prone proteins have been found in healthy normal subjects. These proteins likely have a pathogenetic role in neurodegenerative diseases of ageing. They include the amyloid β (Aβ) protein which may play an important role in Alzheimer's dementia (AD), and α-synuclein, a major determinant of Parkinson's disease (PD). We measured nAbs to Aβ in a group of Italian patients with AD, vascular dementia, non-demented PD patients and healthy elderly controls. We found that Aβ antibody levels in AD were similar to age- and sex-matched controls, but contrary to our expectations, they were significantly reduced in PD. This may identify patients that could be more prone to amyloid aggregation

    Involvement of caspace-3 in the cleavage of terminal transferase.

    Get PDF
    To investigate the in vivo role of caspase-3 in Terminal Transferase metabolism DMSO-treated RPMI-8402, a human pre-T cell line was used. In DMSO treated samples3H-dGTP incorporation and TdT phosphorylation occurs after 4 hours of treatment. After 8 hours cells undergo TdT proteolysis in addition to its inactivation. The cleavage of TdT into 32- and 58-KDa proteolytic fragments occurred simultaneously with the activation of Caspase-3, but preceded changes associated with the apoptotic process described after 48 hours of treatment. The Caspase-3 peptide inhibitor V, used as a specific inhibitor, prevented TdT proteolysis prolonging its activity and rescued cells from apoptosis. Our experiments suggest that TdT is a nuclear substrate for Caspase-3, the main apoptotic effector protease in many cell types, and that the cleavage of TdT represents a primary step in a signal cascade leading to pre-T cell apoptosis

    Synthesis of 2-Alkylaryl and Furanyl Acetates by Palladium Catalysed Carbonylation of Alcohols

    Get PDF
    The one-pot alkoxycarbonylation of halo-free alkylaryl and furanyl alcohols represents a sustainable alternative for the synthesis of alkylaryl and furanyl acetates. In this paper, the reaction between benzyl alcohol, chosen as a model substrate, CH3OH and CO was tested in the presence of a homogeneous palladium catalyst, an activator (isopropenyl acetate (IPAc) or dimethyl carbonate (DMC)) and a base (Cs2CO3). The influence of various reaction parameters such as the CO pressure, ligand and palladium precursor employed, mmol% catalyst load, temperature and time were investigated. The results demonstrate that decreasing the CO pressure from 50 bar to 5 bar at 130 °C for 18 h increases yields in benzyl acetate from 36% to over 98%. Further experiments were performed in the presence of piperonyl and furfuryl alcohol, interesting substrates employed for the synthesis of various fine chemicals. Moreover, furfuryl alcohol is a lignocellulosic-derived building block employed for the synthesis of functionalized furans such as 2-alkylfurfuryl acetates. Both the alcohols were successfully transformed in the corresponding acetate (yields above 96%) in rather mild reaction conditions (5–0.01 mol% catalyst, 5–2 bar CO pressure, 130 °C, 4–18h), demonstrating that the alkoxycarbonylation of alcohols represents a promising sustainable alternative to more impactful industrial practices adopted to date for the synthesis of alkylaryl and furfuryl acetates

    Pathogenesis of tendinopathies: inflammation or degeneration?

    Get PDF
    The intrinsic pathogenetic mechanisms of tendinopathies are largely unknown and whether inflammation or degeneration has the prominent role is still a matter of debate. Assuming that there is a continuum from physiology to pathology, overuse may be considered as the initial disease factor; in this context, microruptures of tendon fibers occur and several molecules are expressed, some of which promote the healing process, while others, including inflammatory cytokines, act as disease mediators. Neural in-growth that accompanies the neovessels explains the occurrence of pain and triggers neurogenic-mediated inflammation. It is conceivable that inflammation and degeneration are not mutually exclusive, but work together in the pathogenesis of tendinopathies

    An IL-15 dependent CD8 T cell response to selected HIV epitopes is related to viral control in early-treated HIV-infected subjects.

    Get PDF
    In some early-treated HIV+ patients, Structured Treatment Interruption (STI) is associated to spontaneous control of viral rebound. Thus, in this clinical setting, we analyzed the immunological parameters associated to viral control. Two groups of early treated patients who underwent STI were retrospectively defined, according to the ability to spontaneously control HIV replication (Controller and Non-controller). Plasma cytokine levels were analyzed by multiplex analysis. CD8 T cell differentiation was determined by polychromatic flow cytometry. Antigen-specific IFN-Γ production was analyzed by ELISpot and intracellular staining after stimulation with HIV-peptides. Long-term Elispot assays were performed in the presence or absence of IL-15. Plasma IL-15 was found decreased over a period of time in Non-Controller patients, whereas a restricted response to Gag (aa.167–202 and 265–279) and Nef (aa.86–100 and 111–138) immunodominant epitopes was more frequently observed in Controller patients. Interestingly, in two Non-Controller patients the CD8-mediated T cells response to immunodominant epitopes could be restored in vitro by IL-15, suggesting a major role of cytokine homeostasis on the generation of protective immunity. In early-treated HIV+ patients undergoing STI, HIV replication control was associated to CD8 T cell maturation and sustained IL-15 levels, leading to HIV-specific CD8 T cell responses against selected Gag and Nef epitopes

    Sarcopenia: age-related skeletal muscle changes from determinants to physical disability.

    Get PDF
    Human aging is characterized by skeletal muscle wasting, a debilitating condition which sets the susceptibility for diseases that directly affect the quality of life and often limit life span. Sarcopenia, i.e. the reduction of muscle mass and/or function, is the consequence of a reduction of protein synthesis and an increase in muscle protein degradation. In addition, the capacity for muscle regeneration is severely impaired in aging and this can lead to disability, particularly in patients with other concomitant diseases or organ impairment. Immobility and lack of exercise, increased levels of proinflammatory cytokines, increased production of oxygen free radicals or impaired detoxification, low anabolic hormone output, malnutrition and reduced neurological drive have been advocated as being responsible for sarcopenia. It is intriguing to notice that multiple pathways converge on skeletal muscle dysfunction, but the factors involved sometimes diverge to different pathways, thus intersecting at critical points. It is reasonable to argue that the activity of these nodes results from the net balance of regulating mechanisms, as in the case of the GH/IGF-1 axis, the testosterone and Cortisol functions, the pro- and anti-inflammatory cytokines and receptors. Both genetic and epigenetic mechanisms operate in regulating the final phenotype, the extent of muscle atrophy and reduction in strength and force generation. It is widely accepted that intervention on lifestyle habits represents an affordable and practical way to modify on a large scale some detrimental outcomes of aging, and particularly sarcopenia. The identification of the molecular chain able to reverse sarcopenia is a major goal of studies on human aging
    • …
    corecore