24 research outputs found

    Planaria: an animal model that integrates development, regeneration and pharmacology

    Get PDF
    Although planarians are established model organisms in developmental biology and regeneration studies, in the last forty years or so, they have caught the attention of pharmacologists, especially to study the pharmacology of drugs of abuse. This review covers the following topics: some fundamentals of the history of animal models and planarians in biomedical research; an abbreviated story of systematic pharmacology research using planarians as a model organism; an example of how planarians are contributing to the search for compounds against acute cocaine toxicity; an analysis of the number of papers on planarians and pharmacological topics from 1900- 2016; some perspectives on pharmacology in developmental and regeneration studies, arguing in favor of the planarian model as a leading subject for this interdisciplinary area of research, and finally some concluding thoughts

    Minimal structural requirements of alkyl Îł-lactones capable of antagonizing the cocaine-induced motility decrease in planarians

    Get PDF
    We recently reported that the natural cyclic lactone, parthenolide, and related analogs prevent the expression of behavioral effects induced by cocaine in planarians and that parthenolide’s γ-lactone ring is required for this effect. In the present work, we tested a series of alkyl γ-lactones with varying chain length (1–8 carbons) to determine their ability to antagonize the planarian motility decrease induced by 200 μM cocaine. Alkyl lactones with up to a 4-carbon alkyl chain did not affect planarian motility or antagonized the cocaine-induced motility decrease; only the compound γ-nonalactone (a γ-lactone with a 5-carbon chain) was able to prevent the cocaine-induced behavioral patterns, while alkyl lactones with longer carbon chains failed to prevent the cocaineinduced effects. Thus, we conclude that the optimal structural features of this family of compounds to antagonize cocaine’s effect in this experimental system is a γ-lactone ring with at a 5-carbon long functional group

    Parthenolide Blocks Cocaine’s Effect on Spontaneous Firing Activity of Dopaminergic Neurons in the Ventral Tegmental Area

    Get PDF
    Chronic cocaine administration leads to catecholamine reuptake inhibition which enhances reward and motivational behaviors. Ventral Tegmental Area dopaminergic (VTA DA) neuronal firing is associated with changes in reward predictive signals. Acute cocaine injections inhibit putative VTA DA cell firing in vertebrates. Parthenolide, a compound isolated from the feverfew plant (Tanacetum parthenium), has been shown to substantially inhibit cocaine’s locomotion effects in a planarian animal model (Pagán et al., 2008). Here we investigated the effects of parthenolide on the spontaneous firing activity of putative VTA DA neurons in anesthetized male rats (250-300g). Single-unit recordings were analyzed after intravenous (i.v.) parthenolide administration followed by 1mg/kg i.v. cocaine injection. Results showed that parthenolide at 0.125 mg/kg and 0.250mg/kg significantly blocked cocaine’s inhibitory effect on DA neuronal firing rate and bursting activity (p\u3c 0.05, two way ANOVA). We propose that parthenolide might inhibit cocaine’s effects on VTA DA neurons via its interaction with a common binding site at monoamine transporters. It is suggested that parthenolide could have a potential use as an overdose antidote or therapeutic agent to cocaine intoxication

    Parthenolide Blocks Cocaine’s Effect on Spontaneous Firing Activity of Dopaminergic Neurons in the Ventral Tegmental Area

    Get PDF
    Chronic cocaine administration leads to catecholamine reuptake inhibition which enhances reward and motivational behaviors. Ventral Tegmental Area dopaminergic (VTA DA) neuronal firing is associated with changes in reward predictive signals. Acute cocaine injections inhibit putative VTA DA cell firing in vertebrates. Parthenolide, a compound isolated from the feverfew plant (Tanacetum parthenium), has been shown to substantially inhibit cocaine’s locomotion effects in a planarian animal model (Pagán et al., 2008). Here we investigated the effects of parthenolide on the spontaneous firing activity of putative VTA DA neurons in anesthetized male rats (250-300g). Single-unit recordings were analyzed after intravenous (i.v.) parthenolide administration followed by 1mg/kg i.v. cocaine injection. Results showed that parthenolide at 0.125 mg/kg and 0.250mg/kg significantly blocked cocaine’s inhibitory effect on DA neuronal firing rate and bursting activity (p< 0.05, two way ANOVA). We propose that parthenolide might inhibit cocaine’s effects on VTA DA neurons via its interaction with a common binding site at monoamine transporters. It is suggested that parthenolide could have a potential use as an overdose antidote or therapeutic agent to cocaine intoxication

    Measuring functional brain recovery in regenerating planarians by assessing the behavioral response to the cholinergic compound cytisine

    Get PDF
    Planarians are traditional model invertebrates in regeneration and developmental biology research that also display a variety of quantifiable behaviors useful to screen for pharmacologically active compounds. One such behavior is the expression of seizure-like movements (pSLMs) induced by a variety of substances. Previous work from our laboratory showed that cocaine, but not nicotine, induced pSLMs in intact but not decapitated planarians. Interestingly, as decapitated planarians regenerated their heads, they gradually recovered their sensitivity to cocaine. These results suggested a method to assess planarian brain regeneration and a possible way of identifying compounds that could enhance or hold back brain regeneration. In the present work, we demonstrate that the cholinergic agent cytisine is a suitable reference compound to apply our method. Cytisine induces pSLMs in a concentration-dependent manner in intact (but not decapitated) planarians of the species Girardia tigrina. Based on our data, we developed a behavioral protocol to assess planarian brain regeneration over time. We tested this method to measure the effect of ethanol on G. tigrina’s brain regeneration. We found that ethanol slows down the rate of planarian brain regeneration in a concentration-dependent manner, consistently with data from other research groups that tested ethanol effects on planarian brain regeneration using different behavioral protocols. Thus, here we establish a general method using cytisine-induced pSLMs as an indicator of brain regeneration in planarians, a method that shows potential for assessing the effect of pharmacologically active compounds in this process

    Planarians require an intact brain to behaviorally react to cocaine, but not to react to nicotine

    Get PDF
    Planarians possess a rudimentary brain with many features in common with vertebrate brains. They also display a remarkable capacity for tissue regeneration including the complete regeneration of the nervous system. Using the induction of planarian seizure-like movements (pSLMs) as a behavioral endpoint, we demonstrate that an intact nervous system is necessary for this organism to react to cocaine exposure, but not necessary to react to nicotine administration. Decapitated planarians (Girardia tigrina) display pSLMs indistinguishable from intact worms when exposed to nicotine, but cocaine-induced pSLMs are reduced by about 95% upon decapitation. Decapitated worms recover their normal sensitivity to cocaine within five days after head amputation. In worms where half of the brain was removed or partially dissected, the expression of cocaine-induced pSLMs was reduced by approximately 75 %. Similar amputations at the level of the tail did not show a significant decrease to cocaine exposure. To the best of our knowledge, our work is the first report that explores how regenerating planarians react to the exposure of cocaine

    Cotinine antagonizes the behavioral effects of nicotine exposure in the planarian Girardia tigrina

    Get PDF
    Nicotine is one of the most addictive drugs abused by humans. Our laboratory and others have demonstrated that nicotine decreases motility and induces seizure-like behavior in planarians (pSLM, which are vigorous writhing and bending of the body) in a concentration-dependent manner. Nicotine also induces withdrawal-like behaviors in these worms. Cotinine is the major nicotine metabolite in humans, although it is not the final product of nicotine metabolism. Cotinine is mostly inactive in vertebrate nervous systems and is currently being explored as a molecule which possess most of nicotine’s beneficial effects and few of its undesirable ones. It is not known whether cotinine is a product of nicotine metabolism in planarians. We found that cotinine by itself does not seem to elicit any behavioral effects in planarians up to a concentration of 1 mM. We also show that cotinine antagonizes the aforementioned nicotine-induced motility decrease and also decreases the expression of nicotine-induced pSLMs in a concentration-dependent manner. Also cotinine prevents the manifestation of some of the withdrawal-like behaviors induced by nicotine in our experimental organism. Thus, we obtained evidence supporting that cotinine antagonizes nicotine in this planarian species. Possible explanations include competitive binding of both compounds at overlapping binding sites, at different nicotinic receptor subtypes, or maybe allosteric interactions

    Actions of Octocoral and Tobacco Cembranoids on Nicotinic Receptors

    Get PDF
    Nicotinic acetylcholine receptors (AChRs) are pentameric proteins that form agonist-gated cation channels through the plasma membrane. AChR agonists and antagonists are potential candidates for the treatment of neurodegenerative diseases. Cembranoids are naturally occurring diterpenoids that contain a 14-carbon ring. These diterpenoids interact with AChRs in complex ways: as irreversible inhibitors at the agonist sites, as noncompetitive inhibitors, or as positive modulators, but no cembranoid was ever shown to have agonistic activity on AChRs. The cembranoid eupalmerin acetate displays positive modulation of agonist-induced currents in the muscle-type AChR and in the related gamma-aminobutyric acid (GABA) type A receptor. Moreover, cembranoids display important biological effects, many of them mediated by nicotinic receptors. Cembranoids from tobacco are neuroprotective through a nicotinic anti-apoptotic mechanism preventing excitotoxic neuronal death which in part could result from anti-inflammatory properties of cembranoids. Moreover, tobacco cembranoids also have anti-inflammatory properties which could enhance their neuroprotective properties. Cembranoids from tobacco affect nicotine-related behavior: they increase the transient initial ataxia caused by first nicotine injection into naive rats and inhibit the expression of locomotor sensitization to repeated injections of nicotine. In addition, cembranoids are known to act as antitumor compounds. In conclusion, cembranoids provide a promising source of lead drugs for many clinical areas, including neuroprotection, smoking-cessation, and anti-cancer therapies

    A cembranoid from tobacco prevents the expression of nicotineinduced withdrawal behavior in planarian worms

    Get PDF
    Using an adaptation of published behavioral protocols, we determined that acute exposure to the cholinergic compounds nicotine and carbamylcholine decreased planarian motility in a concentration-dependent manner. A tobacco cembranoid (1S,2E,4R,6R,7E,11E)-cembra-2,7,11- triene-4,6-diol (4R-cembranoid), also decreased planarian motility. Experiments in the presence of 1 ÎĽM 4R-cembranoid did increase the IC50 for nicotine- but not carbamylcholine-induced decrease in planarian motility. When planarians were exposed for 24 h to either nicotine or carbamylcholine at concentrations near their respective IC50 values and then transferred to plain media, nicotineexposed, but not carbamylcholine- or cembranoid-exposed worms displayed withdrawal-like distress behaviors. In experiments where planarians were pre-exposed to 100 ÎĽM nicotine for 24 h in the presence of 1 ÎĽM 4R-cembranoid, the withdrawal-like effects were significantly reduced. These results indicate that the 4R-cembranoid might have valuable applications for tobacco abuse research. This experimental approach using planarians is useful for the initial screening of compounds relevant to drug abuse and dependence

    Planarians in pharmacology: parthenolide is a specific behavioral antagonist of cocaine in the planarian Girardia tigrina

    Get PDF
    Planarians are traditional animal models in developmental and regeneration biology. Recently, these organisms are arising as vertebrate-relevant animal models in neuropharmacology. Using an adaptation of published behavioral protocols, we have described the alleviation of cocaine-induced planarian seizure-like movements (pSLM) by a naturally-occurring sesquiterpene lactone, parthenolide. Interestingly, parthenolide does not prevent the expression of pSLM induced by amphetamines; in vertebrates, amphetamines interact with the same protein target as cocaine. Parthenolide is also unable to prevent pSLM elicited by the cholinergic compounds nicotine and cytisine or by the glutamatergic agents L- or D- glutamic acid or NMDA. Thus, we conclude that parthenolide is a specific anti-cocaine agent in this experimental organism
    corecore