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Abstract
Nicotinic acetylcholine receptors (AChRs) are pentameric proteins that form agonist-gated cation
channels through the plasma membrane. AChR agonists and antagonists are potential candidates for
the treatment of neurodegenerative diseases. Cembranoids are naturally occurring diterpenoids that
contain a 14-carbon ring. These diterpenoids interact with AChRs in complex ways: as irreversible
inhibitors at the agonist sites, as noncompetitive inhibitors, or as positive modulators, but no
cembranoid was ever shown to have agonistic activity on AChRs. The cembranoid eupalmerin acetate
displays positive modulation of agonist-induced currents in the muscle-type AChR and in the related
gamma-aminobutyric acid (GABA) type A receptor. Moreover, cembranoids display important
biological effects, many of them mediated by nicotinic receptors. Cembranoids from tobacco are
neuroprotective through a nicotinic anti-apoptotic mechanism preventing excitotoxic neuronal death
which in part could result from anti-inflammatory properties of cembranoids. Moreover, tobacco
cembranoids also have anti-inflammatory properties which could enhance their neuroprotective
properties. Cembranoids from tobacco affect nicotine-related behavior: they increase the transient
initial ataxia caused by first nicotine injection into naive rats and inhibit the expression of locomotor
sensitization to repeated injections of nicotine. In addition, cembranoids are known to act as anti-
tumor compounds. In conclusion, cembranoids provide a promising source of lead drugs for many
clinical areas, including neuroprotection, smoking-cessation, and anti-cancer therapies.
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Introduction
The octocorals are a subclass of anthozoans that feature polyps with eight-fold symmetry. The
octocorallia currently include 3 orders, 45 families and close to 4000 estimated species. The
order Alcyonacea is the most abundant and contains about two-thirds of the octocoral families.
Alcyonacea include the so-called “soft” corals and two suborders of sea fans or “gorgonians”.
The octocorals are ideal organisms to search for bioactive metabolites that could be used by
them for chemical defense. Octocorals are immobile, apparently defenseless organisms without
the rigid carbonate skeletons that protect their cousins, the scleractinian or “hard” corals.
Therefore, without chemical defenses the octocorals would seem to be easy nutrient sources
for marine predators. In addition, some octocorals are brightly colored. In the words of the
biologist Edward O. Wilson: “…if a small and otherwise unknown organism is strikingly
beautiful, it is probably poisonous; and if it is not only beautiful, but also easy to catch, it is
probably deadly” (Wilson 2003). The role of octocoral secondary metabolites in defensive
mechanisms has been documented (Sammarco and Coll 1992). Among these metabolites are
many examples of terpenoids. This review will limit itself to a subgroup of diterpenoids known
as cembranoids.

Cembranoids are diterpenoids that contain a 14-carbon or “cembrane” ring that has varying
degrees of oxygenation (Fig. 1). More than 300 naturally occurring cembranoids have been
described (Wahlberg and Eklund 1992). Although cembranoids have been isolated from plants,
including tobacco, insects and even vertebrates, marine invertebrates have been, by far, the
richest source of cembranoids. Most of these compounds have been isolated from Caribbean
or Pacific gorgonians in which cembranoids comprise up to 25% of their identified secondary
metabolites (Rodríguez 2001). The occurrence of cembranoids in octocorals was discovered
nearly 50 years ago by the Ciereszko lab (Ciereszko et al 1960), where they successfully
isolated and characterized eunicin (Fig. 1) from the Caribbean gorgonian Eunicea mammosa.

Nicotinic acetylcholine receptors (AChRs) are pentameric transmembrane proteins that form
agonist-gated cation channels through the plasma membrane (Karlin 2002). They are members
of the ligand-gated ion channel superfamily that also includes gamma-aminobutyric acid
(GABA) type A, glycine and serotonin (5HT) type 3 receptors. Each AChR subunit features a
large extracellular N-terminal segment followed by 4 transmembrane segments, M1 - M4, with
M2 lining the transmembrane ion channel. The large extracellular segments form the agonist
sites at their subunit interfaces where agonists and competitive antagonists bind.
Noncompetitive AChR antagonists bind outside the agonist cavity thereby and prevent
conformational changes of the protein necessary for channel opening.

There are many AChR subtypes and the subunit stoichiometry is not known in all cases. The
AChR found in muscle and electric organ is a heteropentamer that has a subunit stoichiometry
of α2βγδ or α2βεδ. In contrast, the α7 AChR, which is found both inside and outside the nervous
system, is a homopentameric molecule. Each muscle-type AChR has two non-identical agonist-
binding sites that are located in the receptor's extracellular domain at the αγ or αε and αδ subunit
interfaces (Pedersen and Cohen 1990). Differences in the homologous non-α subunit segments
are what give the αγ, αε and αδ sites different affinities for certain agonists and competitive
antagonists such as tubocurarine (Pedersen and Cohen 1990) and α-conotoxins MI and GI
(Hann et al 1994). Biochemical studies, done mostly on electric organ AChR, first established
that the α subunit contributes three segments (A, B and C) to each site while the γ or ε and δ
subunits contribute four segments each (D, E, F, and G) (Sine 2002). Based on the crystal
structure of a soluble mollusk acetylcholine binding protein reported in 2001 (Brejc et al
2001), it was proposed that the structure of the extracellular domain of every AChR subunit
was formed by an N-terminal α-helix followed by 10 antiparallel β strands that fold into a “β
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sandwich”. This structure was recently confirmed crystallographically for a muscle-type AChR
subunit (Dellisanti et al 2007). It is now clear that α subunit segments A, B and C are largely
unstructured segments that lie between β strands 4 and 5, 7 and 8, and 9 and 10, respectively.
Segment G residues on γ or ε and δ subunits are also present in an unstructured segment between
β strands 8 and 9, while segments D, E and F residues are actually part of beta strands 1, 2 and
5/6, respectively (Sine 2002). For further information on AChR structure and function, the
reader is referred to two excellent reviews (Kalamida et al 2007; Karlin 2002). This review
will discuss the effects of octocoral and tobacco cembranoids on AChRs and related ligand-
gated ion channels.

Mechanisms of cembranoid actions on nicotinic receptors
Actions on muscle-type nicotinic receptors

The first evidence that cembranoids affect nicotinic receptors was presented in 1981 with the
discovery and characterization of lophotoxin (LTX, Fig. 1), a cembranoid isolated from Pacific
gorgonians of the genus Lophogorgia (Culver and Jacobs 1981;Fenical et al 1981). This
cembranoid produced slow irreversible block at the neuromuscular junction in rat diaphragm
preparations. In addition to its very slow onset, the neuromuscular inhibition by LTX was
recognized early as being unusual because LTX lacked a cationic moiety present in all AChR
agonists and competitive antagonists known at that time (Culver and Jacobs 1981). Indeed, the
lack of a cationic moiety led to early doubts that LTX was a competitive inhibitor, despite the
resemblance of its inhibition to that of the better-characterized inhibition of muscle AChR by
the competitive antagonists α-neurotoxins (Atchison et al 1984;Langdon and Jacobs 1983).
These doubts proved to be unjustified when it was subsequently shown that LTX is a
competitive inhibitor that binds irreversibly and preferentially to one of the two agonists sites
on embryonic mouse muscle AChR. This site is the one displaying lower affinity for
tubocurarine, that is now known to be at the αδ interface (Culver et al 1984).

Activity similar to that of LTX was also identified in five of its structural analogs that were
isolated from the Caribbean gorgonian Pseudopterogorgia bipinnata (Culver et al 1985). One
of these cembranoids, bipinnatin B (BPB, Fig. 1), was comparable to LTX in its binding affinity
to embryonic mouse muscle AChR and was more potent than LTX in binding to Torpedo
californica electric organ AChR. Both [3H]-LTX and [3H]-BPB covalently labeled the T.
californica AChR α subunit (Abramson et al 1988). [3H]-BPB was later shown to covalently
react with alpha Y190 which is now known to contribute an important electrophilic aromatic
group to the agonist site from segment C of the α subunit (Abramson et al 1989).

A structure-activity study on 25 LTX analogs, 12 of which displayed substantial activity on
T. californica AChR, identified a pharmacophore in which the electron-deficient epoxide
carbons at C7 and C8 mimic the cationic nitrogen group that is usually found in AChR agonists
and competitive antagonists while the lactone oxygens mimic the ester group of acetylcholine
(Abramson et al 1991). It was later shown that the nematode Caenorhabditis elegans AChR
expressed in Xenopus oocytes is resistant to BPB due to the substitution of proline for tyrosine
at the homologous position on the C. elegans α-like subunit, unc38 (Tornoe et al 1996).

The reason for the slow onset of inhibition in the AChR agonist sites became clearer when
three bipinnatins (A, B and C) were shown to be relatively inactive protoxins that required pre-
incubation in aqueous buffer for several hours to become active (Groebe et al 1994). The main
active solvolysis products of BPA and BPC (and presumably of BPB) featured the replacement
of the acetate group present on C2 of all three analogues with a hydroxyl group (Hyde et al
1995a). This reaction was subsequently shown to occur through an SN1 type reaction involving
the rate-limiting generation of a carbocation at C2 followed by the addition of hydroxide from
solvent (Hyde et al 1995b). However, LTX did not display this same protoxin phenomenon;
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its activity was about the same with or without preincubation in aqueous buffer (Groebe and
Abramson 1995). LTX does not carry an acetate or hydroxyl group at C2 position but instead
has a saturated carbon at that position. LTX is intrinsically a very slow-binding irreversible
inhibitor that selectively labels the mouse embryonic muscle AChR αδ interface site due to
both a higher reversible affinity and a faster rate of irreversible inhibition at the αδ site (Groebe
and Abramson 1995).

Inspired by the findings on LTX and the bipinnatins, this laboratory studied 3 cembranoids
that were isolated from Caribbean gorgonians of the Eunicea genus, eunicin, eupalmerin
acetate (EUAC) and 12,13-bis-epi-eupalmerin (BEEP)(Fig. 1). These cembranoids inhibited
agonist-induced currents through the embryonic mouse muscle AChR expressed in Xenopus
oocytes with IC50s in the low μmolar range (Eterovic et al 1993a). EUAC was also shown to
partially block agonist-induced currents through T. californica electric organ AChR expressed
in oocytes (Eterovic et al 1993b). However, unlike the inhibition by LTX and the bipinnatins,
the AChR inhibition by these three cembranoids proved to be non-competitive in nature. None
of the cembranoids inhibited binding of the competitive antagonist α-bungarotoxin to electric
organ AChR, ruling out their binding to agonist sites on the AChR. On the other hand, all 3
cembranoids completely and competitively inhibited high-affinity binding of [3H]-
phencyclidine (PCP) to the AChR from T. californica electric organ (Eterovic et al 1993a).
The most potent in this activity was eunicin [Fig. 1], the first cembranoid identified in
octocorals (Ciereszko et al 1960), with an IC50 near 1μM. This suggested a channel site for
cembranoid binding because PCP had been shown to bind with high-affinity inside the ion
channel of the desensitized muscle-type AChR (Oswald et al 1983). In retrospect, it is not
surprising that the inhibitory mechanism of eunicin, EUAC and BEEP is different from that
of LTX and the bipinnatins. Comparison of the structures of the Eunicea cembranoids with
LTX and its analogues reveals that, although all 3 Eunicea cembranoids possess a lactone ring,
they lack the 7,8 epoxide of the LTX pharmacophore that reacts covalently with αY190 in the
muscle-type agonist sites (Abramson et al 1991). The Eunicea cembranoids also lack the furan
ring responsible for giving compact rigidity to the LTX molecule.

Further structure-activity studies on a series of 20 cembranoids isolated from various octocorals
showed that all 20 cembranoids, including lophotoxin, were able to completely block PCP
binding to the T. californica AChR (Hann et al 1998). The IC50 values for this inhibition ranged
from 0.9 μM for methylpseudoplexaurate [Fig. 1] to 372 μM for lophotoxin. Furthermore,
eunicin and methylpseudoplexaurate competed with each other for the PCP site, which
confirmed that the observed inhibition of PCP binding involved a direct interaction between
cembranoids and the AChR and was not due to a non-specific membrane effect. There was a
reasonably good correlation between potency and cembranoid hydrophobicity, as measured
by high-performance thin-layer chromatography mobility, which is consistent with
cembranoid binding to a hydrophobic site on the AChR. All 7 of the cembranoids in this series
that were tested electrophysiologically inhibited agonist-induced currents through the T.
californica AChR expressed in oocytes with low micromolar potency.

Complete inhibition of the binding to T. californica AChR of [3H]-tenocyclidine (TCP), an
analogue of PCP, was obtained with two cembranoids of tobacco origin: (1S,2E,4R,6R,7E,
11E)-cembra-2,7,11-triene-4,6-diol (4R) and its stereoisomer, 4S (Fig. 1) (Ferchmin et al
2001). These two cembranoids differ only in the stereochemistry of their hydroxyl group at C4
position and yet 4R displayed nearly an order of magnitude higher inhibitory potency than 4S,
confirming that inhibitory cembranoid binding to the AChR is not due to nonspecific
hydrophobic interactions. These two tobacco cembranoids along with two octocoral
cembranoids, EUAC and BEEP, completely and noncompetitively inhibited agonist-
induced 86Rb efflux through the embryonic human muscle AChR (Ferchmin et al 2001) with
potencies similar to those observed for inhibition of agonist-induced current on embryonic
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mouse muscle AChR (Eterovic et al 1993a) and of PCP or TCP binding to the T. californica
AChR (Ferchmin et al 2001;Hann et al 1998).

Radioligand-receptor assays confirmed the presence of a cembranoid-binding site on the T.
californica AChR that sterically overlaps the TCP/PCP site and is probably located in the ion
channel (Pagan et al 2001). This inhibitory site on T. californica AChR also appears to overlap
the site for cationic noncompetitive inhibitors such as procaine and quinacrine.

Electrophysiological studies on oocyte-expressed T. californica and embryonic mouse muscle
AChRs revealed that EUAC and PCP interact with different residues on the M2 segments in
the ion channels in these two muscle-type receptors to produce their inhibitory effects (Eterovic
et al 1999).

In addition to their inhibitory effect, eunicin, EUAC and BEEP increased the rate of
desensitization of the embryonic mouse muscle AChR (Eterovic et al 1993a). EUAC affected
the desensitization process differently in the muscle and electocyte AChRs and produced an
unusual secondary response in the muscle AChR (Eterovic et al 1993b). These were the first
indications that more than one cembranoid binding site may exist on the AChR. Evidence was
also seen for the presence on the T. californica AChR of one or more additional cembranoid
sites which allosterically modulate the affinity of cembranoid for its inhibitory channel site as
well as the affinity of long-chain alkanol general anesthetics (Pagan et al 2001).

The mechanism of EUAC actions on the embryonic mouse muscle AChR in BC3H-1 cells was
studied by using whole-cell and single-channel patch-clamp current measurements (Ulrich et
al 2008). EUAC did not act as an agonist on this receptor as revealed by whole-cell recording
experiments. Co-application of 30 μM EUAC with 50 μM, 100 μM, or 500 μM
carbamoylcholine (CCh) reversibly inhibited the current amplitude, whereas, with 20 μM CCh,
current was increased above control values in the presence of the cembranoid. EUAC
concentration curves (0.01-40 μM) obtained with 100 μM and 500 μM CCh displayed slope
coefficients, nH, significantly smaller than one, suggesting that EUAC bound to several sites
with widely differing affinities on the receptor molecule. The apparent rate of receptor
desensitization in the presence of EUAC and CCh was either slower than or equal to that
obtained with CCh alone. The major finding from single-channel studies was that EUAC did
not affect single-channel conductance or the ability of CCh to interact with the receptor. Instead,
EUAC acted by increasing the channel closing rate constant. The results are not consistent with
a simple competitive model for EUAC inhibition, with the sequential open-channel block
model, or with inhibition by increased desensitization. The data are best accounted for by a
model in which EUAC acts by closed-channel block at low concentrations, by positive
modulation at intermediate concentrations, and by negative allosteric modulation of the open
channel at high concentrations.

Actions on neuronal-type nicotinic acetylcholine receptors
The first evidence that LTX irreversibly blocks neuronal AChRs was acquired in frog
sympathetic ganglia and in guinea pig ileum sections with parasympathetic innervation
(Langdon and Jacobs 1985). This inhibition by LTX displayed the same time course and
potency as the neuromuscular block discovered earlier. It was later shown that LTX is a high-
affinity competitive antagonist of ganglionic AChRs (Sorenson et al 1987). Later studies on
rat neuronal AChR subunit combinations expressed in Xenopus oocytes showed that BPB
completely blocked α4β2 transmission at the same concentration that it blocked embryonic
mouse muscle AChR (Luetje et al 1990). At the same concentration, BPB only partially blocked
α2β2 and α3β2 transmission. The mechanism of this inhibition was not determined and there
have been no further studies reported on the neuronal AChR blocking action of the LTX family
of cembranoids.
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Cembranoids isolated both from octocorals (EUAC and BEEP, Fig. 1) and from tobacco (4R
and 4S, Fig. 1) were tested on human α4β2 neuronal AChRs and on human α3β4 ganglionic
AChRs expressed in different cell lines (Ferchmin et al 2001). All four cembranoids completely
and noncompetitively inhibited agonist-induced 86Rb flux through these receptors, displaying
slightly higher potency on the α3β4 AChR (IC50 values ranging between 2 - 9 μM) than on the
α4β2 AChR (IC50 values ranging between 10 - 33 μM). 4R was more potent than 4S with both
receptors. However, later studies on rat α4β2 neuronal AChRs expressed in Xenopus oocytes
showed no difference in the potencies of 4R and 4S to inhibit agonist-induced currents; both
isoforms inhibited nicotine-induced response more effectively than acetylcholine-induced
reponse and the inhibition was significantly increased by preincubation with cembranoid for
1 minute (Eaton et al 2004).

In an exciting related development, it was recently reported that EUAC at micromolar
concentrations potentiated the rat α1β2γ2L GABAA receptor expressed in HEK 293 cells (Li
et al 2008). Site-directed mutagenesis and pharmacological approaches led to the conclusion
that EUAC potentiates GABA-induced ion flow by binding to an allosteric site. The mode of
action was similar to that of neurosteroids. The cembranoid may either interact with the
neurosteroid binding site on the GABAA receptor or act on common down-stream signal
transduction targets. As mentioned above, the GABAA receptor is a member of the ligand-
gated ion channel superfamily to which nicotinic AChRs also belong. Therefore, cembranoids
may also represent a novel class of activity modulators for this AChR-related neuronal receptor.

Neuroprotective effects of cembranoids
Agonists and antagonist selective for AChR subtypes have been used in experimental and
clinical research. Some of those compounds are potential candidates for the treatment of
neurodegenerative disease such as Alzheimer's disease, Parkinson's disease and others. A
growing list of in vivo and in vitro research suggest that AChRs modulators are gaining
importance as clinically relevant neuroprotective drugs (Mudo et al 2007).

The most detailed study of neuroprotection by cembranoids was done not with marine but with
tobacco cembranoids (Ferchmin et al 2005). This work was performed with acute hippocampal
slices using bath applied N-methyl-D-aspartate (NMDA) as the excitotoxic stimulus. NMDA
as a specific agonist of the NMDA subtype of glutamate receptors, mimics the effects of
excitotoxicity in stroke and in certain neurodegenerative diseases. The decreased capability to
produce synaptically elicited population spikes was used as the endpoint of excitotoxicity rather
than the late event of neuronal death. A large body of literature supports the validity of this
paradigm and its relevance to in vivo events (Kerr et al 1999; Shinno et al 1997). The
cembranoid used was 4R, one of the mayor cembranoids found in tobacco leaves. Application
of 4R before or after application of NMDA prevented the loss of the physiological competence
of pyramidal neurons in the CA1 area of hippocampal slices.

4R protected the function of the hippocampal slice in a dose dependent manner with an
EC50 of 0.24 μM. In order to elucidate the neuroprotective mechanism, cell signaling pathways
were studied by Western blot analysis of phosphorylated protein kinases in the presence and
in the absence of inhibitors of the relevant cell signaling steps. These experiments revealed
that 4R neuroprotection was mediated by the activation of the PI3-kinase/Akt antiapoptotic
cascade. Consequently, the proapoptotic enzyme glycogen synthase kinase 3-β (GSK3-β) was
inactivated, leading to the reversal of apoptosis induced by NMDA application. The Raf/MEK/
ERK cascade was not involved in the 4R-mediated neuroprotection.

A model of the synaptic mechanism intervening in 4R neuroprotection was proposed.
According to this model, the synaptic mechanism is triggered by 4R inhibition of the α7 AChR
located on GABAergic interneurons (Alkondon and Albuquerque 2001; Frazier et al 1998).
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The inhibition of α7 AChRs decreases the GABAergic tone causing increased ACh release
into the synaptic cleft (Giorgetti et al 2000), which then activates the α4β2 AChRs located
post-synaptically. Several facts support this model. The selective α7 inhibitor
methyllycaconitine (Ivy Carroll et al 2007; Sharples and Wonnacott 2001) mimics, at least in
part, the neuroprotective effect of 4R (Ferchmin et al 2003). Other in vivo and in vitro studies
confirm that α7 inhibition can be neuroprotective (de Fiebre and de Fiebre 2005; Laudenbach
et al 2002; Martin et al 2004). The involvement of the α4β2 nAChR was inferred on the basis
of the complete inhibition of 4R-mediated neuroprotection by dihydro-β-erythroidine, a
selective α4β2 inhibitor (Raggenbass and Bertrand 2002; Sharples and Wonnacott 2001).

The marine cembranoid sarcophytolide (Fig. 1), isolated from the soft coral Sarcophyton
glaucum, was reported to be neuroprotective against glutamate-induced excitotoxicity leading
to apoptosis of neuronal cortical primary cultures (Badria et al 1998). Sarcophytolide was
neuroprotective when applied prior to 1 mM glutamate but did not rescue the viability of
neurons when applied after glutamate. Application of sarcophytolide for 30 min suppressed
most of the Ca2+ influx mediated by 0.1 mM glutamate. In addition, sarcophytolide increased
the expression of the antiapoptotic protein Bcl-2. The authors proposed that sarcophytolide
was neuroprotective by stabilizing Ca2+ homeostasis and activating the anti-apoptotic protein
Bcl-2.

It is difficult to compare the two cembranoids with neuroprotective action, 4R and
sarcophytolide, since different experimental paradigms were used to study the behavior of each
compound. There are, however, apparent similarities between both compounds in the effective
dose and in the mechanism of neuroprotection. The most effective neuroprotective
concentrations of 4R and sarcophytolide were 40 and 32 μM, respectively, and both
cembranoids apparently have antiapoptotic activities. We have demonstrated that 4R-induced
neuroprotection is based on a nicotinic mechanism. For neuroprotection by sarcophytolide a
similar mechanism is suggested in view of its structural similarity with other cembranoids
interacting with AChRs.

Neuroprotective action by cembranoids could be mediated by their anti-inflammatory, anti-
oxidant, cytoprotective, and anti-apoptotic activities (Candelario-Jalil et al 2005; Castellanos
et al 2002; del Zoppo et al 2000; Dirnagl et al 1999; Iadecola and Alexander 2001; Lees et al
2006; Nakayama et al 1998; Ren et al 2003). Several cembranoids are endowed with these
properties. The tobacco cembranoids 4S and 4R were reported to inhibit prostaglandin
synthesis with lower IC50 than acetylsalicylic acid (Olsson et al 1993). El Sayed and colleagues
studied the anti-tumor activity of sarcophytol A, sarcophine, and the derivatives produced in
their laboratory (El Sayed et al 1998b). Sarcophytol A suppressed oxidant formation, decreased
infiltration of phagocytes, and alleviated TPA-induced inflammation. Activation of
macrophages and microglia are very relevant to neuroprotection (del Zoppo et al 2000; Iadecola
and Alexander 2001; Vila et al 2003), and cembranoids participate in decreasing this toxic
process. Sarcophytol protected against DNA damage in MRC5 cells induced by oxygen
radicals that were generated by stimulated phagocytes (Weitberg and Corvese 1999).
Sarcophine and derivatives produced by bioconversion decreased the release of superoxide
from lypopolysaccharide-activated microglia (Sawant et al 2006). It remains to be determined
whether the AChR-mediated neuroprotection by 4R is the exception or a general property of
most cembranoids. In conclusion, marine and terrestrial cembranoids could be a source of lead
compounds for neuroprotection in neurodegenerative diseases.

Cembranoids and nicotine-related behavior
Injection of cembranoids of marine or terrestrial origin did not overtly alter behavior of rats in
open field nor did intramuscular injection of tobacco cembranoids in the caudal thigh muscle
impair movement or the capacity to perform complex and strength requiring tasks (unpublished

Ferchmin et al. Page 7

Toxicon. Author manuscript; available in PMC 2010 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



results). The behavioral effects of cembranoids in the context of behavioral sensitization to
nicotine were studied for the first time in our laboratory (Ferchmin et al 2001). Sensitization
to a drug means that repeated exposures to the same dose produce greater responses; in rats,
sensitization to nicotine manifests as increased locomotor activity. Cembranoids robustly
inhibited the expression of nicotine sensitization in rats. To induce sensitization, nicotine was
injected subcutaneously for seven days. Immediately after each injection, the rats were
transferred to a maze where exploration was measured. Sensitization could be maintained by
four weekly nicotine injections for several months. We used a specific type of maze called
Greek cross with bright and dark compartments (DeNelsky and Denenberg 1967; Ferchmin
and Eterovic 1990; Ferchmin et al 1993) but most areas that allows for exploration are suitable
for this purpose. Sensitization was measured by injecting saline 30 minutes before challenging
the rats with either 0.2 or 0.4 mg/kg nicotine. Control exploratory activity was measured in
sensitized rats injected with saline instead of nicotine. The central nicotinic antagonist 1 mg/
kg mecamylamine injected 30 min before nicotine inhibited the expression of sensitization to
the level of sensitized rats injected with saline instead of nicotine. Two octocoral cembranoids,
eunicine and EUAC, and the tobacco cembranoid 4R at a dose of 6 mg/ kg inhibited the
expression of sensitization to the level of saline controls and mecamylamine injected sensitized
rats (Ferchmin et al 2001).

Nicotine injected to nicotine-naive rats induces ataxia and although enhanced locomotion by
nicotine begins with the first administration, the increased exploratory activity is seen only
after the 5 to 20 min when the nicotine ataxia decreases (Clarke and Kumar 1983a; b). The
intensity and length of this initial ataxia depends on the dose of nicotine. After the second or
third daily nicotine injection, the ataxia disappears altogether. The initial ataxia is mediated by
the nucleus Accumbens and is a different phenomenon from sensitization (Benwell and Balfour
1992). This central effect of nicotine appears to be more complex than initially expected since
it depends on the circadian rhythm and the receptors involved remain to be identified (Kita et
al 1988). Interestingly, 4R injected with nicotine to naive rats dramatically increased the initial
nicotine mediated ataxia (unpublished results). In another study, 4R cembranoid inhibited
nicotine effects in planarian flatworms (Pagán et al., in preparation).

The fact that cembranoids are present in cigarette smoke (Saito et al 1985) and modulate the
effect of nicotine in vivo suggests a plausible manner to manipulate tobacco use.

Other biological activities of cembranoids
The anti-growth effects of several marine and semisynthetic cembranoids for different types
of cancer cell lines have been studied since 1989 (Fujiki et al 1989). Sarcophine and
sarcophytol, cembranoids isolated from Sarcophyton glaucum, are among the best
characterized. Sarcophine isolated in large amounts from the Red Sea soft coral has been
studied in detail for its potential as chemotherapeutics. As shown in its chemical structure (Fig.
1), sarcophine contains the 7-8 epoxide similar to lophotoxin which suggests that it has the
potential to act directly at the agonist site of AChRs. The high yield of the cembranoid obtained
from the coral together with its promising activity makes it particularly interesting for
modification and generation of a structurally diverse library of sarcophine derivatives.
Hydroxylated and sulfur-containing derivatives of sarcophine were synthesized and some of
these derivatives demonstrated improved biological activity (El Sayed et al 1998a), (Sawant
et al 2006).

In summary, though the mechanism of antimitotic and anti-inflammatory actions of
cembranoids is not clear, it is intriguing to speculate that both events rely on intracellular
calcium-dependent signaling pathways that may be triggered by the activation of AChR,
especially the α7 subtype that is highly permeable to this ion. Whether the mechanism of action
for the particular cembranoids is as a direct receptor antagonist similar to lophotoxin, as an
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allosteric modulator such as the tobacco cembranoids, and which intracellular signaling
pathways are effected as a result, promises to be an exciting area of research in the near future.

Perspectives
Cembranoids are a promising source of pharmacologically active lead compounds. The main
relevant pharmacological activities of cembranoids are the well studied anticancer activity and
the more recently discovered nicotinic activity that appears to mediate neuroprotection.

The anticancer activity was paradoxically attributed to apparently antagonistic activities like
cytotoxicity, cytoprotection, anti-inflammatory and antioxidant properties. Neuroprotection
was also attributed to antioxidant and antiapoptotic activity. The inflammatory and immune
responses which are part of the response to cancer and neurodegenerative disease generate
toxic reactive oxygen species are also under nicotinic control (Razani-Boroujerdi et al 2007).
We proposed that the antiapoptotic activity was triggered by a nicotinic signal transduction
cascade. It is possible that both, the anticancer activity and neuroprotection are actually
mediated by nicotinic receptor modulation. Nicotinic receptors are involved in a complex
manner in these processes.

On the basis of the above considerations we propose that the most successful research on
clinical applications of cembranoids will relate to the study of signal transduction mechanisms
triggered by nicotinic receptors. In addition, finding cembranoids with selective affinity for
nicotinic receptors subtypes could provide powerful tools for research and medicinal uses.
These studies will be challenging because of the multiplicity of subtypes of nAChRs and the
variety of downstream effectors present in different tissues.
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Figure 1.
Cembranoid structures
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