121 research outputs found
The effect of summertime shelf break upwelling on nutrient flux in southeastern United States continental shelf waters
Gulf Stream-induced upwelling at the shelf break of the South Atlantic Bight (SAB) presents water which, in summer, can intrude onto the continental shelf. In July 1979, an XBT survey of the continental shelf revealed such an intrusion of cold water off St. Augustine, Florida. From weekly mappings, it was determined that Gulf Stream water \u3c22.5°C covered 3280 km2 and occupied 38 km3 shoreward of the 42 m isobath. Using temperature and nitrate distributions and the T°C:NO3 relationship, we determined that 3200 metric tons of nitrate-nitrogen were advected into the study area. Net nitrate-nitrogen fluxes were 32 μmoles · m−2 · sec−1 across the 42 m isobath and 30 μmoles · m−2 · sec−1 across the 30 m isobath.The advection of nitrate-enriched water into the photic zone caused a dramatic increase in phytoplankton biomass. The decreasing nitrate concentrations correlated with chlorophyll increases indicating phytoplankton production was mainly at the expense of nitrate advected into the area. Prior to the intrusion, production was likely supported by regenerated nutrients.Summertime intrusions supply an estimated 2.9 × 104 mtons NO3-N · yr−1 to the middle shelf area of the southern SAB and are thus a major source of nitrogen to that area
Prey detection and prey capture in copepod nauplii
Copepod nauplii are either ambush feeders that feed on motile prey or they produce a feeding current that entrains prey cells. It is unclear how ambush and feeding-current feeding nauplii perceive and capture prey. Attack jumps in ambush feeding nauplii should not be feasible at low Reynolds numbers due to the thick viscous boundary layer surrounding the attacking nauplius. We use high-speed video to describe the detection and capture of phytoplankton prey by the nauplii of two ambush feeding species (Acartia tonsa and Oithona davisae) and by the nauplii of one feeding-current feeding species (Temora longicornis). We demonstrate that the ambush feeders both detect motile prey remotely. Prey detection elicits an attack jump, but the jump is not directly towards the prey, such as has been described for adult copepods. Rather, the nauplius jumps past the prey and sets up an intermittent feeding current that pulls in the prey from behind towards the mouth. The feeding-current feeding nauplius detects prey arriving in the feeding current but only when the prey is intercepted by the setae on the feeding appendages. This elicits an altered motion pattern of the feeding appendages that draws in the prey
The kinematics of swimming and relocation jumps in copepod nauplii
Copepod nauplii move in a world dominated by viscosity. Their swimming-by-jumping propulsion mode, with alternating power and recovery strokes of three pairs of cephalic appendages, is fundamentally different from the way other microplankters move. Protozoans move using cilia or flagella, and copepodites are equipped with highly specialized swimming legs. In some species the nauplius may also propel itself more slowly through the water by beating and rotating the appendages in a different, more complex pattern. We use high-speed video to describe jumping and swimming in nauplii of three species of pelagic copepods: Temora longicornis, Oithona davisae and Acartia tonsa. The kinematics of jumping is similar between the three species. Jumps result in a very erratic translation with no phase of passive coasting and the nauplii move backwards during recovery strokes. This is due to poorly synchronized recovery strokes and a low beat frequency relative to the coasting time scale. For the same reason, the propulsion efficiency of the nauplii is low. Given the universality of the nauplius body plan, it is surprising that they seem to be inefficient when jumping, which is different from the very efficient larger copepodites. A slow-swimming mode is only displayed by T. longicornis. In this mode, beating of the appendages results in the creation of a strong feeding current that is about 10 times faster than the average translation speed of the nauplius. The nauplius is thus essentially hovering when feeding, which results in a higher feeding efficiency than that of a nauplius cruising through the water
Timing of embryonic quiescence determines viability of embryos from the calanoid copepod, Acartia tonsa (Dana)
<div><p>Like 41 other calanoid copepods, <i>Acartia tonsa</i>, are capable of inducing embryonic quiescence when experiencing unfavorable environmental conditions. The ecdysone-signaling cascade is known to have a key function in developmental processes like embryogenesis and molting of arthropods, including copepods. We examined the role of <i>ecdysteroid-phosphate phosphatase</i> (<i>EPPase</i>), <i>ecdysone receptor</i> (<i>EcR</i>), <i>ß fushi tarazu transcription factor 1</i> (<i>ßFTZ-F1</i>), and the <i>ecdysteroid-regulated early gene E74</i> (<i>E74</i>), which represent different levels of the ecdysone-signaling cascade in our calanoid model organism. Progression of embryogenesis was monitored and hatching success determined to evaluate viability. Embryos that were induced quiescence before the gastrulation stage would stay in gastrulation during the rest of quiescence and exhibited a slower pace of hatching as compared to subitaneous embryos. In contrast, embryos developed further than gastrulation would stay in gastrulation or later stages during quiescence and showed a rapid pace in hatching after quiescence termination. Expression patterns suggested two peaks of the biological active ecdysteroids, 20-hydroxyecdysone (20E). The first peak of 20E was expressed in concert with the beginning of embryogenesis originating from yolk-conjugated ecdysteroids, based on <i>EPPase</i> expression. The second peak is suggested to originate from <i>de novo</i> synthesized 20E around the limb bud stage. During quiescence, the expression patterns of <i>EPPase</i>, <i>EcR</i>, <i>ßFTZ-F1</i>, and <i>E74</i> were either decreasing or not changing over time. This suggests that the ecdysone-signaling pathway play a key role in the subitaneous development of <i>A</i>. <i>tonsa</i> embryogenesis, but not during quiescence. The observation is of profound ecological and practical relevance for the dynamics of egg banks.</p></div
An approach for particle sinking velocity measurements in the 3–400 μm size range and considerations on the effect of temperature on sinking rates
The flux of organic particles below the mixed layer is one major pathway of carbon from the surface into the deep ocean. The magnitude of this export flux depends on two major processes—remineralization rates and sinking velocities. Here, we present an efficient method to measure sinking velocities of particles in the size range from approximately 3–400 μm by means of video microscopy (FlowCAM®). The method allows rapid measurement and automated analysis of mixed samples and was tested with polystyrene beads, different phytoplankton species, and sediment trap material. Sinking velocities of polystyrene beads were close to theoretical values calculated from Stokes’ Law. Sinking velocities of the investigated phytoplankton species were in reasonable agreement with published literature values and sinking velocities of material collected in sediment trap increased with particle size. Temperature had a strong effect on sinking velocities due to its influence on seawater viscosity and density. An increase in 9 °C led to a measured increase in sinking velocities of ~40 %. According to this temperature effect, an average temperature increase in 2 °C as projected for the sea surface by the end of this century could increase sinking velocities by about 6 % which might have feedbacks on carbon export into the deep ocean
A Molecular and Co-Evolutionary Context for Grazer Induced Toxin Production in Alexandrium tamarense
Marine dinoflagellates of the genus Alexandrium are the proximal source of neurotoxins associated with Paralytic Shellfish Poisoning. The production of these toxins, the toxin biosynthesis and, thus, the cellular toxicity can be influenced by abiotic and biotic factors. There is, however, a lack of substantial evidence concerning the toxins' ecological function such as grazing defense. Waterborne cues from copepods have been previously found to induce a species-specific increase in toxin content in Alexandrium minutum. However, it remains speculative in which context these species-specific responses evolved and if it occurs in other Alexandrium species as well. In this study we exposed Alexandrium tamarense to three copepod species (Calanus helgolandicus, Acartia clausii, and Oithona similis) and their corresponding cues. We show that the species-specific response towards copepod-cues is not restricted to one Alexandrium species and that co-evolutionary processes might be involved in these responses, thus giving additional evidence for the defensive role of phycotoxins. Through a functional genomic approach we gained insights into the underlying molecular processes which could trigger the different outcomes of these species-specific responses and consequently lead to increased toxin content in Alexandrium tamarense. We propose that the regulation of serine/threonine kinase signaling pathways has a major influence in directing the external stimuli i.e. copepod-cues, into different intracellular cascades and networks in A. tamarense. Our results show that A. tamarense can sense potential predating copepods and respond to the received information by increasing its toxin production. Furthermore, we demonstrate how a functional genomic approach can be used to investigate species interactions within the plankton community
Tools for crushing diatoms – opal teeth in copepods feature a rubber-like bearing composed of resilin
Diatoms are generally known for superior mechanical properties of their mineralised shells. Nevertheless, many copepod crustaceans are able to crush such shells using their mandibles. This ability very likely requires feeding tools with specific material compositions and properties. For mandibles of several copepod species silica-containing parts called opal teeth have been described. The present study reveals the existence of complex composite structures, which contain, in addition to silica, the soft and elastic protein resilin and form opal teeth with a rubber-like bearing in the mandibles of the copepod Centropages hamatus. These composite structures likely increase the efficiency of the opal teeth while simultaneously reducing the risk of mechanical damage. They are supposed to have coevolved with the diatom shells in the evolutionary arms race, and their development might have been the basis for the dominance of the copepods within today's marine zooplankton
Taxonomic diversity and identification problems of oncaeid microcopepods in the Mediterranean Sea
The species diversity of the pelagic microcopepod
family Oncaeidae collected with nets of 0.1-mm mesh
size was studied at 6 stations along a west-to-east transect
in the Mediterranean Sea down to a maximum depth of
1,000 m. A total of 27 species and two form variants have
been identified, including three new records for the
Mediterranean. In addition, about 20, as yet undescribed,
new morphospecies were found (mainly from the genera
Epicalymma and Triconia) which need to be examined
further. The total number of identified oncaeid species was
similar in the Western and Eastern Basins, but for some cooccurring
sibling species, the estimated numerical dominance
changed. The deep-sea fauna of Oncaeidae, studied
at selected depth layers between 400 m and the near-bottom
layer at >4,200 m depth in the eastern Mediterranean
(Levantine Sea), showed rather constant species numbers
down to ∼3,000 m depth. In the near-bottom layers, the
diversity of oncaeids declined and species of Epicalymma
strongly increased in numerical importance. The taxonomic
status of all oncaeid species recorded earlier in the
Mediterranean Sea is evaluated: 19 out of the 46 known
valid oncaeid species are insufficiently described, and most
of the taxonomically unresolved species (13 species) have
originally been described from this area (type locality). The
deficiencies in the species identification of oncaeids cast
into doubt the allegedly cosmopolitan distribution of some
species, in particular those of Mediterranean origin. The
existing identification problems even of well-described
oncaeid species are exemplified for the Oncaea mediacomplex,
including O. media Giesbrecht, O. scottodicarloi
Heron & Bradford-Grieve, and O. waldemari Bersano &
Boxshall, which are often erroneously identified as a single
species (O. media). The inadequacy in the species identification
of Oncaeidae, in particular those from the Atlantic
and Mediterranean, is mainly due to the lack of reliable
identification keys for Oncaeidae in warm-temperate and/or
tropical seas. Future efforts should be directed to the
construction of identification keys that can be updated
according to the latest taxonomic findings, which can be
used by the non-expert as well as by the specialist. The
adequate consideration of the numerous, as yet undescribed,
microcopepod species in the world oceans, in
particular the Oncaeidae, is a challenge for the study of the
structure and function of plankton communities as well as
for global biodiversity estimates
- …