4 research outputs found

    Protective effect of ions against cell death induced by acid stress in Saccharomyces

    Get PDF
    Saccharomyces boulardii is a probiotic used to prevent or treat antibiotic-induced gastrointestinal disorders and acute enteritis. For probiotics to be effective they must first be able to survive the harsh gastrointestinal environment. In this work, we show that S. boulardii displayed the greatest tolerance to simulated gastric environments compared with several Saccharomyces cerevisiae strains tested. Under these conditions, a pH 2.0 was the main factor responsible for decreased cell viability. Importantly, the addition of low concentrations of sodium chloride (NaCl) protected cells in acidic conditions more effectively than other salts. In the absence of S. boulardii mutants, the protective effects of Na 1 in yeast viability in acidic conditions was tested using S. cerevisiae Na 1 -ATPases (ena1-4), Na 1 /H 1 antiporter (nha1D) and Na 1 /H 1 antiporter prevacuolar (nhx1D) null mutants, respectively. Moreover, we provide evidence suggesting that this protection is determined by the plasma membrane potential, once altered by low pH and low NaCl concentrations. Additionally, the absence or low expression/activity of Ena proteins seems to be closely related to the basal membrane potential of the cells

    Biochemical characterization of serine transport in Leishmania (Leishmania) amazonensis

    No full text
    In addition to its role as a protein component in Leishmania, serine is also a precursor for the synthesis of both phosphatidylserine, which is a membrane molecule involved in parasite invasion and inactivation of macrophages, and sphingolipids, which are necessary for Leishmania to differentiate into its infective forms. We have characterized serine uptake in both promastigote and amastigote forms of Leishmania (Leishmania) amazonensis. In promastigotes, kinetic data show a single, saturable transport system, with a Km of 0.253 +/- 0.01 mM and a maximum velocity of 0.246 +/- 0.04 nmol/min per 107 cells. Serine transport increased linearly with temperature in the range from 20 degrees C to 45 degrees C, allowing the calculation of an activation energy of 7.09 kJ/mol. Alanine, cysteine, glycine, threonine, valine and ethanolamine competed with the substrate at a ten-fold excess concentration. Serine uptake was dependent on pH, with an optimum activity at pH 7.5. The characterization of the serine transport process in amastigotes revealed a transport system with a similar Km, energy of activation and pH response to that found in promastigotes, suggesting that the same transport system is active in both insect vector and mammalian host Leishmania stages. This could constitute an evolutionary mechanism that guarantees the provision of such an essential molecule during host change events, such as differentiation into amastigotes and macrophage invasion, as well as to ensure that the parasite maintains the infection in the mammalian host. (C) 2008 Elsevier B.V. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq

    Protective effect of ions against cell death induced by acid stress in Saccharomyces.

    No full text
    Saccharomyces boulardii is a probiotic used to prevent or treat antibiotic-induced gastrointestinal disorders and acute enteritis. For probiotics to be effective they must first be able to survive the harsh gastrointestinal environment. In this work, we show that S. boulardii displayed the greatest tolerance to simulated gastric environments compared with several Saccharomyces cerevisiae strains tested. Under these conditions, a pH 2.0 was the main factor responsible for decreased cell viability. Importantly, the addition of low concentrations of sodium chloride (NaCl) protected cells in acidic conditions more effectively than other salts. In the absence of S. boulardii mutants, the protective effects of Na1 in yeast viability in acidic conditions was tested using S. cerevisiae Na1-ATPases (ena1-4), Na1/H1 antiporter (nha1D) and Na1/H1 antiporter prevacuolar (nhx1D) null mutants, respectively. Moreover, we provide evidence suggesting that this protection is determined by the plasma membrane potential, once altered by low pH and low NaCl concentrations. Additionally, the absence or low expression/activity of Ena proteins seems to be closely related to the basal membrane potential of the cells
    corecore