49 research outputs found

    Scaling relations of supersonic turbulence in star-forming molecular clouds

    Get PDF
    We present a direct numerical and analytical study of driven supersonic MHD turbulence that is believed to govern the dynamics of star-forming molecular clouds. We describe statistical properties of the turbulence by measuring the velocity difference structure functions up to the fifth order. In particular, the velocity power spectrum in the inertial range is found to be close to E(k) \~ k^{-1.74}, and the velocity difference scales as ~ L^{0.42}. The results agree well with the Kolmogorov--Burgers analytical model suggested for supersonic turbulence in [astro-ph/0108300]. We then generalize the model to more realistic, fractal structure of molecular clouds, and show that depending on the fractal dimension of a given molecular cloud, the theoretical value for the velocity spectrum spans the interval [-1.74 ... -1.89], while the corresponding window for the velocity difference scaling exponent is [0.42 ... 0.78].Comment: 17 pages, 6 figures include

    From the CMF to the IMF: Beyond the Core-Collapse Model

    Full text link
    Observations have indicated that the prestellar core mass function (CMF) is similar to the stellar initial mass function (IMF), except for an offset towards larger masses. This has led to the idea that there is a one-to-one relation between cores and stars, such that the whole stellar mass reservoir is contained in a gravitationally-bound prestellar core, as postulated by the core-collapse model, and assumed in recent theoretical models of the stellar IMF. We test the validity of this assumption by comparing the final mass of stars with the mass of their progenitor cores in a high-resolution star-formation simulation that generates a realistic IMF under physical conditions characteristic of observed molecular clouds. Using a definition of bound cores similar to previous works we obtain a CMF that converges with increasing numerical resolution. We find that the CMF and the IMF are closely related in a statistical sense only; for any individual star there is only a weak correlation between the progenitor core mass and the final stellar mass. In particular, for high mass stars only a small fraction of the final stellar mass comes from the progenitor core, and even for low mass stars the fraction is highly variable, with a median fraction of only about 50%. We conclude that the core-collapse scenario and related models for the origin of the IMF are incomplete. We also show that competitive accretion is not a viable alternative.Comment: 23 pages, 29 figures. Link to supplementary material and full Table 1: http://www.erda.dk/vgrid/core-mass-function/ . Submitted to MNRA

    Structure Function Scaling in Compressible Super-Alfvenic MHD Turbulence

    Full text link
    Supersonic turbulent flows of magnetized gas are believed to play an important role in the dynamics of star-forming clouds in galaxies. Understanding statistical properties of such flows is crucial for developing a theory of star formation. In this letter we propose a unified approach for obtaining the velocity scaling in compressible and super--Alfv\'{e}nic turbulence, valid for arbitrary sonic Mach number, \ms. We demonstrate with numerical simulations that the scaling can be described with the She--L\'{e}v\^{e}que formalism, where only one parameter, interpreted as the Hausdorff dimension of the most intense dissipative structures, needs to be varied as a function of \ms. Our results thus provide a method for obtaining the velocity scaling in interstellar clouds once their Mach numbers have been inferred from observations.Comment: published in Physical Review Letter

    The Star Formation Rate of Molecular Clouds

    Get PDF
    24 pages, 5 figures, Accepted for publication as a chapter in Protostars and Planets VI, University of Arizona Press (2014), eds. H. Beuther, R. S. Klessen, C. P. Dullemond, Th. HenningWe review recent advances in the analytical and numerical modeling of the star formation rate in molecular clouds and discuss the available observational constraints. We focus on molecular clouds as the fundamental star formation sites, rather than on the larger-scale processes that form the clouds and set their properties. Molecular clouds are shaped into a complex filamentary structure by supersonic turbulence, with only a small fraction of the cloud mass channeled into collapsing protostars over a free-fall time of the system. In recent years, the physics of supersonic turbulence has been widely explored with computer simulations, leading to statistical models of this fragmentation process, and to the prediction of the star formation rate as a function of fundamental physical parameters of molecular clouds, such as the virial parameter, the rms Mach number, the compressive fraction of the turbulence driver, and the ratio of gas to magnetic pressure. Infrared space telescopes, as well as ground-based observatories have provided unprecedented probes of the filamentary structure of molecular clouds and the location of forming stars within them.PP is supported by the FP7-PEOPLE- 2010-RG grant PIRG07-GA-2010- 261359. Simulations by PP were carried out on the NASA/Ames Pleiades supercomputer, and under the PRACE project pra50751 running on SuperMUC at the LRZ (project ID pr86li). CF thanks for support from the Australian Research Council for a Discovery Projects Fellowship (Grant DP110102191). NJE was supported by NSF Grant AST-1109116 to the University of Texas at Austin. The research of CFM is supported in part by NSF grant AST-1211729 and NASA grant NNX13AB84G. DJ is supported by the National Research Council of Canada and by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant. JKJ is supported by a Lundbeck Foundation Junior Group Leader Fellowship. Research at Centre for Star and Planet Formation was funded by the Danish National Research Foundation and the University of Copenhagens Programme of Excellence. Supercomputing time at Leibniz Rechenzentrum (PRACE projects pr86li, pr89mu, and project pr32lo), at Forschungszentrum J¨ulich (project hhd20), and at DeIC/KU in Copenhagen are gratefully acknowledged

    Simulating Supersonic Turbulence in Magnetized Molecular Clouds

    Full text link
    We present results of large-scale three-dimensional simulations of weakly magnetized supersonic turbulence at grid resolutions up to 1024^3 cells. Our numerical experiments are carried out with the Piecewise Parabolic Method on a Local Stencil and assume an isothermal equation of state. The turbulence is driven by a large-scale isotropic solenoidal force in a periodic computational domain and fully develops in a few flow crossing times. We then evolve the flow for a number of flow crossing times and analyze various statistical properties of the saturated turbulent state. We show that the energy transfer rate in the inertial range of scales is surprisingly close to a constant, indicating that Kolmogorov's phenomenology for incompressible turbulence can be extended to magnetized supersonic flows. We also discuss numerical dissipation effects and convergence of different turbulence diagnostics as grid resolution refines from 256^3 to 1024^3 cells.Comment: 10 pages, 3 figures, to appear in the proceedings of the DOE/SciDAC 2009 conferenc

    Synthetic Molecular Clouds from Supersonic MHD and Non-LTE Radiative Transfer Calculations

    Get PDF
    The dynamics of molecular clouds is characterized by supersonic random motions in the presence of a magnetic field. We study this situation using numerical solutions of the three-dimensional compressible magneto-hydrodynamic (MHD) equations in a regime of highly supersonic random motions. The non-LTE radiative transfer calculations are performed through the complex density and velocity fields obtained as solutions of the MHD equations, and more than 5x10^5 synthetic molecular spectra are obtained. We use a numerical flow without gravity or external forcing. The flow is super-Alfvenic and corresponds to model A of Padoan and Nordlund (1997). Synthetic data consist of sets of 90x90 synthetic spectra with 60 velocity channels, in five molecular transitions: J=1-0 and J=2-1 for 12CO and 13CO, and J=1-0 for CS. Though we do not consider the effects of stellar radiation, gravity, or mechanical energy input from discrete sources, our models do contain the basic physics of magneto-fluid dynamics and non-LTE radiation transfer and are therefore more realistic than previous calculations. As a result, these synthetic maps and spectra bear a remarkable resemblance to the corresponding observations of real clouds.Comment: 33 pages, 12 figures included, 5 jpeg figures not included (fig1a, fig1b, fig3, fig4 fig5), submitted to Ap

    A Super-Alfvenic Model of Dark Clouds

    Get PDF
    Supersonic random motions are observed in dark clouds and are traditionally interpreted as Alfven waves, but the possibility that these motions are super-Alfvenic has not been ruled out. In this work we report the results of numerical experiments in two opposite regimes; M_a ~ 1 and M_a >> 1, where M_a is the initial Alfvenic Mach number --the ratio of the rms velocity to the Alfven speed. Our results show that models with M_a >> 1 are consistent with the observed properties of molecular clouds that we have tested --statistics of extinction measurements, Zeeman splitting measurements of magnetic field strength, line width versus integrated antenna temperature of molecular emission line spectra, statistical B-n relation, and scatter in that relation-- while models with M_a ~ 1 have properties that are in conflict with the observations. We find that both the density and the magnetic field in molecular clouds may be very intermittent. The statistical distributions of magnetic field and gas density are related by a power law, with an index that decreases with time in experiments with decaying turbulence. After about one dynamical time it stabilizes at B ~ n^{0.4}. Magnetically dominated cores form early in the evolution, while later on the intermittency in the density field wins out, and also cores with weak field can be generated, by mass accretion along magnetic field lines.Comment: 10 figures, 2 tables include

    Supersonic turbulence and structure of interstellar molecular clouds

    Get PDF
    The interstellar medium (ISM) provides a unique laboratory for highly supersonic, driven hydrodynamics turbulence. We present a theory of such turbulence, confirm it by numerical simulations, and use the results to explain observational properties of interstellar molecular clouds, the regions where stars are born.Comment: 5 pages, 3 figures include
    corecore