17 research outputs found
On the sensitivity analysis of porous finite element models for cerebral perfusion estimation
AbstractComputational physiological models are promising tools to enhance the design of clinical trials and to assist in decision making. Organ-scale haemodynamic models are gaining popularity to evaluate perfusion in a virtual environment both in healthy and diseased patients. Recently, the principles of verification, validation, and uncertainty quantification of such physiological models have been laid down to ensure safe applications of engineering software in the medical device industry. The present study sets out to establish guidelines for the usage of a three-dimensional steady state porous cerebral perfusion model of the human brain following principles detailed in the verification and validation (V&V 40) standard of the American Society of Mechanical Engineers. The model relies on the finite element method and has been developed specifically to estimate how brain perfusion is altered in ischaemic stroke patients before, during, and after treatments. Simulations are compared with exact analytical solutions and a thorough sensitivity analysis is presented covering every numerical and physiological model parameter.The results suggest that such porous models can approximate blood pressure and perfusion distributions reliably even on a coarse grid with first order elements. On the other hand, higher order elements are essential to mitigate errors in volumetric blood flow rate estimation through cortical surface regions. Matching the volumetric flow rate corresponding to major cerebral arteries is identified as a validation milestone. It is found that inlet velocity boundary conditions are hard to obtain and that constant pressure inlet boundary conditions are feasible alternatives. A one-dimensional model is presented which can serve as a computationally inexpensive replacement of the three-dimensional brain model to ease parameter optimisation, sensitivity analyses and uncertainty quantification.The findings of the present study can be generalised to organ-scale porous perfusion models. The results increase the applicability of computational tools regarding treatment development for stroke and other cerebrovascular conditions.</jats:p
A porous circulation model of the human brain for in silico clinical trials in ischaemic stroke
The advancement of ischaemic stroke treatment relies on resource-intensive experiments and clinical trials. In order to improve ischaemic stroke treatments, such as thrombolysis and thrombectomy, we target the development of computational tools for in silico trials which can partially replace these animal and human experiments with fast simulations. This study proposes a model that will serve as part of a predictive unit within an in silico clinical trial estimating patient outcome as a function of treatment. In particular, the present work aims at the development and evaluation of an organ-scale microcirculation model of the human brain for perfusion prediction. The model relies on a three-compartment porous continuum approach. Firstly, a fast and robust method is established to compute the anisotropic permeability tensors representing arterioles and venules. Secondly, vessel encoded arterial spin labelling magnetic resonance imaging and clustering are employed to create an anatomically accurate mapping between the microcirculation and large arteries by identifying superficial perfusion territories. Thirdly, the parameter space of the problem is reduced by analysing the governing equations and experimental data. Fourthly, a parameter optimization is conducted. Finally, simulations are performed with the tuned model to obtain perfusion maps corresponding to an open and an occluded (ischaemic stroke) scenario. The perfusion map in the occluded vessel scenario shows promising qualitative agreement with computed tomography images of a patient with ischaemic stroke caused by large vessel occlusion. The results highlight that in the case of vessel occlusion (i) identifying perfusion territories is essential to capture the location and extent of underperfused regions and (ii) anisotropic permeability tensors are required to give quantitatively realistic estimation of perfusion change. In the future, the model will be thoroughly validated against experiments
On the sensitivity analysis of porous finite element models for cerebral perfusion estimation
Computational physiological models are promising tools to enhance the design of clinical trials and to assist in decision making. Organ-scale haemodynamic models are gaining popularity to evaluate perfusion in a virtual environment both in healthy and diseased patients. Recently, the principles of verification, validation, and uncertainty quantification of such physiological models have been laid down to ensure safe applications of engineering software in the medical device industry. The present study sets out to establish guidelines for the usage of a three-dimensional steady state porous cerebral perfusion model of the human brain following principles detailed in the verification and validation (V&V 40) standard of the American Society of Mechanical Engineers. The model relies on the finite element method and has been developed specifically to estimate how brain perfusion is altered in ischaemic stroke patients before, during, and after treatments. Simulations are compared with exact analytical solutions and a thorough sensitivity analysis is presented covering every numerical and physiological model parameter. The results suggest that such porous models can approximate blood pressure and perfusion distributions reliably even on a coarse grid with first order elements. On the other hand, higher order elements are essential to mitigate errors in volumetric blood flow rate estimation through cortical surface regions. Matching the volumetric flow rate corresponding to major cerebral arteries is identified as a validation milestone. It is found that inlet velocity boundary conditions are hard to obtain and that constant pressure inlet boundary conditions are feasible alternatives. A one-dimensional model is presented which can serve as a computationally inexpensive replacement of the three-dimensional brain model to ease parameter optimisation, sensitivity analyses and uncertainty quantification. The findings of the present study can be generalised to organ-scale porous perfusion models. The results increase the applicability of computational tools regarding treatment development for stroke and other cerebrovascular conditions
A porous circulation model of the human brain for in silico clinical trials in ischaemic stroke
The advancement of ischaemic stroke treatment relies on resource-intensive experiments and clinical trials. In order to improve ischaemic stroke treatments, such as thrombolysis and thrombectomy, we target the development of computational tools for in silico trials which can partially replace these animal and human experiments with fast simulations. This study proposes a model that will serve as part of a predictive unit within an in silico clinical trial estimating patient outcome as a function of treatment. In particular, the present work aims at the development and evaluation of an organ-scale microcirculation model of the human brain for perfusion prediction. The model relies on a three-compartment porous continuum approach. Firstly, a fast and robust method is established to compute the anisotropic permeability tensors representing arterioles and venules. Secondly, vessel encoded arterial spin labelling magnetic resonance imaging and clustering are employed to create an anatomically accurate mapping between the microcirculation and large arteries by identifying superficial perfusion territories. Thirdly, the parameter space of the problem is reduced by analysing the governing equations and experimental data. Fourthly, a parameter optimization is conducted. Finally, simulations are performed with the tuned model to obtain perfusion maps corresponding to an open and an occluded (ischaemic stroke) scenario. The perfusion map in the occluded vessel scenario shows promising qualitative agreement with computed tomography images of a patient with ischaemic stroke caused by large vessel occlusion. The results highlight that in the case of vessel occlusion (i) identifying perfusion territories is essential to capture the location and extent of underperfused regions and (ii) anisotropic permeability tensors are required to give quantitatively realistic estimation of perfusion change. In the future, the model will be thoroughly validated against experiments
Coupling one-dimensional arterial blood flow to three-dimensional tissue perfusion models for in silico trials of acute ischaemic stroke
An acute ischaemic stroke is due to the sudden blockage of an intracranial blood vessel by an embolized thrombus. In the context of setting up in silico trials for the treatment of acute ischaemic stroke, the effect of a stroke on perfusion and metabolism of brain tissue should be modelled to predict final infarcted brain tissue. This requires coupling of blood flow and tissue perfusion models. A one-dimensional intracranial blood flow model and a method to couple this to a brain tissue perfusion model for patient-specific simulations is presented. Image-based patient-specific data on the anatomy of the circle of Willis are combined with literature data and models for vessel anatomy not visible in the images, to create an extended model for each patient from the larger vessels down to the pial surface. The coupling between arterial blood flow and tissue perfusion occurs at the pial surface through the estimation of perfusion territories. The coupling method is able to accurately estimate perfusion territories. Finally, we argue that blood flow can be approximated as steady-state flow at the interface between arterial blood flow and tissue perfusion to reduce the cost of organ-scale simulations
Putative Transcriptomic Biomarkers in the Inflammatory Cytokine Pathway Differentiate Major Depressive Disorder Patients from Control Subjects and Bipolar Disorder Patients
Mood disorders consist of two etiologically related, but distinctly treated illnesses, major depressive disorder (MDD) and bipolar disorder (BPD). These disorders share similarities in their clinical presentation, and thus show high rates of misdiagnosis. Recent research has revealed significant transcriptional differences within the inflammatory cytokine pathway between MDD patients and controls, and between BPD patients and controls, suggesting this pathway may possess important biomarker properties. This exploratory study attempts to identify disorder-specific transcriptional biomarkers within the inflammatory cytokine pathway, which can distinguish between control subjects, MDD patients and BPD patients. This is achieved using RNA extracted from subject blood and applying synthesized complementary DNA to quantitative PCR arrays containing primers for 87 inflammation-related genes. Initially, we use ANOVA to test for transcriptional differences in a ‘discovery cohort’ (total n = 90) and then we use t-tests to assess the reliability of any identified transcriptional differences in a ‘validation cohort’ (total n = 35). The two most robust and reliable biomarkers identified across both the discovery and validation cohort were Chemokine (C-C motif) ligand 24 (CCL24) which was consistently transcribed higher amongst MDD patients relative to controls and BPD patients, and C-C chemokine receptor type 6 (CCR6) which was consistently more lowly transcribed amongst MDD patients relative to controls. Results detailed here provide preliminary evidence that transcriptional measures within inflammation-related genes might be useful in aiding clinical diagnostic decision-making processes. Future research should aim to replicate findings detailed in this exploratory study in a larger medication-free sample and examine whether identified biomarkers could be used prospectively to aid clinical diagnosis