13 research outputs found

    Miniaturized spectrometer radiometer based on MMIC technology for tropospheric water vapor profiling, A

    Get PDF
    Includes bibliographical references.The fabrication of a miniaturized ground-based water vapor profiling radiometer demonstrates the capability of monolithic microwave and millimeter-wave integrated circuit technology to reduce the mass and volume of microwave remote sensing instrumentation and to reduce substantially the necessary operational power consumption and size of the radiofrequency and intermediate-frequency sections. Since those sections comprise much of the mass and volume of current microwave receivers, the fabrication of this system represents an important contribution to the design of microwave radiometers. This miniaturized radiometer implementation is particularly well suited to benefit from the cost savings associated with mass production. The small size of the radiometer (24 × 18 × 16 cm) reduces the power required by the temperature control system and allows a rapid warm-up to the temperature set point as well as maintenance of a highly stable internal temperature. Exhibiting very similar statistical properties, the four channels of the radiometer have measured Allan times of greater than 40 s. Measurement results demonstrate that the instrument achieves a sensitivity of better than 0.2 K for 3 s of integration time. Preliminary comparisons of measured brightness temperatures with simulation results based on radiosonde data show good agreement, which are consistent with previously reported results.This work was supported by the National Science Foundation under Grant ATM-0456270 to Colorado State University and Grant ATM-0239722 to the University of Massachusetts Amherst

    Effects of foam on ocean surface microwave emission inferred from radiometric observations of reproducible breaking waves

    Get PDF
    Includes bibliographical references.WindSat, the first satellite polarimetric microwave radiometer, and the NPOESS Conical Microwave Imager/Sounder both have as a key objective the retrieval of the ocean surface wind vector from radiometric brightness temperatures. Available observations and models to date show that the wind direction signal is only 1-3 K peak-to-peak at 19 and 37 GHz, much smaller than the wind speed signal. In order to obtain sufficient accuracy for reliable wind direction retrieval, uncertainties in geophysical modeling of the sea surface emission on the order of 0.2 K need to be removed. The surface roughness spectrum has been addressed by many studies, but the azimuthal signature of the microwave emission from breaking waves and foam has not been adequately addressed. RECENtly, a number of experiments have been conducted to quantify the increase in sea surface microwave emission due to foam. Measurements from the Floating Instrumentation Platform indicated that the increase in ocean surface emission due to breaking waves may depend on the incidence and azimuth angles of observation. The need to quantify this dependence motivated systematic measurement of the microwave emission from reproducible breaking waves as a function of incidence and azimuth angles. A number of empirical parameterizations of whitecap coverage with wind speed were used to estimate the increase in brightness temperatures measured by a satellite microwave radiometer due to wave breaking in the field of view. These results provide the first empirically based parameterization with wind speed of the effect of breaking waves and foam on satellite brightness temperatures at 10.8, 19, and 37 GHz.This work was supported in part by the Department of the Navy, Office of Naval Research under Awards N00014-00-1-0615 (ONR/YIP) and N00014-03-1-0044 (Space and Remote Sensing) to the University of Massachusetts Amherst, and N00014-00-1-0152 (Space and Remote Sensing) to the University of Washington. The National Polar-orbiting Operational environmental Satellite System Integrated Program Office supported the Naval Research Laboratory's participation through Award NA02AANEG0338 and supported data analysis at Colorado State University and the University of Washington through Award NA05AANEG0153

    The Electrojet Zeeman Imaging Explorer (EZIE) Mission and the Microwave Electroject Magnetogram (MEM) Radiometer Instrument

    Get PDF
    The Electrojet Zeeman Imaging Explorer (EZIE) mission is a multi-satellite 6U CubeSat mission designed to temporally and spatially sample the Earth’s current induced magnetic field. The EZIE mission will help discern amongst competing theories of the spatial structures of Auroral Electro Jets (AEJ). The EZIE mission uses a unique payload design relative to traditional magnetometers; a 118.75 GHz mm-wave polarimetric radiometric system with a digital spectrometer backend, called the Microwave Electrojet Magnetogram (MEM) system. MEM measures the Zeeman split in frequency of the Oxygen absorption line that is directly proportional to the strength of the magnetic field of the observation. The polarimetric nature of MEM helps inform about the direction of the magnetic field. The MEM system consists multiple-beams in a push-broom configuration to detect magnetic fields at a approximate altitude of 80km

    Amplifier Module for 260-GHz Band Using Quartz Waveguide Transitions

    Get PDF
    Packaging of MMIC LNA (monolithic microwave integrated circuit low-noise amplifier) chips at frequencies over 200 GHz has always been problematic due to the high loss in the transition between the MMIC chip and the waveguide medium in which the chip will typically be used. In addition, above 200 GHz, wire-bond inductance between the LNA and the waveguide can severely limit the RF matching and bandwidth of the final waveguide amplifier module. This work resulted in the development of a low-loss quartz waveguide transition that includes a capacitive transmission line between the MMIC and the waveguide probe element. This capacitive transmission line tunes out the wirebond inductance (where the wire-bond is required to bond between the MMIC and the probe element). This inductance can severely limit the RF matching and bandwidth of the final waveguide amplifier module. The amplifier module consists of a quartz E-plane waveguide probe transition, a short capacitive tuning element, a short wire-bond to the MMIC, and the MMIC LNA. The output structure is similar, with a short wire-bond at the output of the MMIC, a quartz E-plane waveguide probe transition, and the output waveguide. The quartz probe element is made of 3-mil quartz, which is the thinnest commercially available material. The waveguide band used is WR4, from 170 to 260 GHz. This new transition and block design is an improvement over prior art because it provides for better RF matching, and will likely yield lower loss and better noise figure. The development of high-performance, low-noise amplifiers in the 180-to- 700-GHz range has applications for future earth science and planetary instruments with low power and volume, and astrophysics array instruments for molecular spectroscopy. This frequency band, while suitable for homeland security and commercial applications (such as millimeter-wave imaging, hidden weapons detection, crowd scanning, airport security, and communications), also has applications to future NASA missions. The Global Atmospheric Composition Mission (GACM) in the NRC Decadel Survey will need low-noise amplifiers with extremely low noise temperatures, either at room temperature or for cryogenic applications, for atmospheric remote sensing

    Temporal Experiment for Storms and Tropical Systems Technology Demonstration (TEMPEST-D) Mission: Enabling Time-Resolved Cloud and Precipitation Observations from 6U-Class Satellite Constellations

    Get PDF
    The Temporal Experiment for Storms and Tropical Systems Technology Demonstration (TEMPEST-D) mission is to demonstrate the capability of 6U-Class satellite constellations to perform repeat-pass radiometry to measure clouds and precipitation with high temporal resolution on a global basis. The TEMPEST mission concept is to improve understanding of clouds and precipitation by providing critical information on their time evolution in different climatic regimes. Measuring at five frequencies from 89 to 182 GHz, TEMPEST-D millimeter-wave radiometers are capable of penetrating into the cloud to observe changes as precipitation begins or ice accumulates inside the storm. The TEMPEST-D flight model radiometer instrument has been completed, passed functional testing, vibration testing and self-compatibility testing with the XB1 spacecraft bus. The next steps for the TEMPEST-D millimeter-wave radiometer are thermal vacuum testing and antenna pattern measurements. The complete TEMPEST-D flight system will be delivered to NanoRacks for launch integration in the autumn of 2017, in preparation for launch to the ISS in the second quarter of 2018, with deployment shortly thereafter into a nominal orbit at 400-km altitude and 51.6° inclination

    A 6U CubeSat Constellation for Atmospheric Temperature and Humidity Sounding

    Get PDF
    We are currently developing a 118/183 GHz sensor that will enable observations of temperature and precipitation profiles over land and ocean. The 118/183 GHz system is well suited for a CubeSat deployment as ~10cm antenna aperture provides sufficiently small footprint sizes (~25km). This project will enable low cost, compact radiometer instrumentation at 118 and 183 GHz that would fit in a 6U CubeSat with the objective of mass-producing this design to enable a suite of small satellites to image the key geophysical parameters that are needed to improve prediction of extreme weather events. We will take advantage of past and current technology developments at JPL viz. HAMSR (High Altitude Microwave Scanning Radiometer), Advanced Component Technology (ACT’08) to enable low-mass and low-power high frequency airborne radiometers. The 35 nm InP enabling technology provides significant reduction in power consumption (Low Noise Amplifier + Mixer Block consumes 24 mW). In this paper, we will describe the design and implementation of the 118 GHz temperature sounder and 183 GHz humidity sounder instrument on the 6U CubeSat. In addition, a summary of radiometer calibration and retrieval techniques of the temperature and humidity will be discussed. The successful demonstration of this instrument on the 6U CubeSat would pave the way for the development of a constellation consisting of suite of these instruments. The proposed constellation of these 6U CubeSat radiometers would allow sampling of tropospheric temperature and humidity with fine temporal (on the order of minutes) and spatial resolution (~25 km)

    Digital Spectrometers for Interplanetary Science Missions

    No full text
    A fully digital polyphase spectrometer recently developed by the University of California Berkeley Wireless Research Center in conjunction with the Jet Propulsion Laboratory provides a low mass, power, and cost implementation of a spectrum channelizer for submillimeter spectrometers for future missions to the Inner and Outer Solar System. The digital polyphase filter bank spectrometer (PFB) offers broad bandwidth with high spectral resolution, minimal channel-to-channel overlap, and high out-of-band rejection

    Retrieval of Atmospheric Water Vapor Density With Fine Spatial Resolution Using Three-Dimensional Tomographic Inversion of Microwave Brightness Temperatures Measured by a Network of Scanning Compact Radiometers

    No full text
    Abstract-Quantitative precipitation forecasting is currently limited by the paucity of observations on sufficiently fine temporal and spatial scales. Three-dimensional water vapor fields can be retrieved with improved spatial coverage from measurements obtained using a network of scanning microwave radiometers. To investigate this potential, an observation system simulation experiment was performed in which synthetic examples of retrievals using a network of radiometers were compared with results from the Weather Research and Forecasting model at a grid scale of 500 m. These comparisons show that the 3-D water vapor field can be retrieved with an accuracy of better than 15%-20%. A ground-based demonstration network of three compact microwave radiometers was deployed at the Atmospheric Radiation Measurement Southern Great Plains site in Oklahoma. Results using these network measurements demonstrated the first retrieval of the 3-D water vapor field in the troposphere at fine spatial and temporal resolutions

    Three-Dimensional Humidity Retrieval Using a Network of Compact Microwave Radiometers to Correct for Variations in Wet Tropospheric Path Delay in Spaceborne Interferometric SAR Imagery

    No full text
    Spaceborne interferometric synthetic aperture radar (SAR) (InSAR) imaging has been used for over a decade to monitor tectonic movements and landslides, as well as to improve digital elevation models. However, InSAR is affected by variations in round-trip propagation delay due to changes in ionospheric total electron content and in tropospheric humidity and temperature along the signal path. One of the largest sources of uncertainty in estimates of tropospheric path delay is the spatial and temporal variability of water vapor density, which currently limits the quality of InSAR products. This problem can be partially addressed by using a number of SAR interferograms from subsequent satellite overpasses to reduce the degradation in the images or by analyzing a long time series of interferometric phases from permanent scatterers. However, if there is a sudden deformation of the Earth's surface, the detection of which is one of the principal objectives of InSAR measurements over land, the effect of water vapor variations cannot be removed, reducing the quality of the interferometric products. In those cases, high-resolution information on the atmospheric water vapor content and its variation with time can be crucial to mitigate the effect of wet-tropospheric path delay variations. This paper describes the use of a ground-based microwave radiometer network to retrieve 3-D water vapor density with fine spatial and temporal resolution, which can be used to reduce InSAR ambiguities due to changes in wet-tropospheric path delay. Retrieval results and comparisons between the integrated water vapor measured by the radiometer network and satellite data are presented

    Miniature Packaging Concept for LNAs in the 200-300 GHz Range

    No full text
    In this work, we describe new miniaturized low noise amplifier modules which we developed for incorporation in small-scale satellites or Cubesats, and which exhibit similar or better performance compared to previously reported LNAs in the literature. We have targeted the WR4 (170-260 GHz) and WR3 (220-325 GHz) waveguide bands for the module development. The modules include two different methods of E-plane probes which have been developed for low loss, and stability at high frequencies. MMIC LNAs were also developed for these frequency ranges and fabricated in Northrop Grumman Corporation's 35 nm InP HEMT technology, and we have experimentally verified that noise performance is lower than reported in prior work. The best results include a miniature LNA module with 550K noise at 224 GHz, and a wideband LNA module with 15 dB gain from 230-280 GHz
    corecore