63 research outputs found

    High Diagnostic Performance of Short Magnetic Resonance Imaging Protocols for Prostate Cancer Detection in Biopsy-naive Men: The Next Step in Magnetic Resonance Imaging Accessibility

    Get PDF
    Background: To make magnetic resonance imaging (MRI) more accessible to men at risk of high-grade prostate cancer (PCa), there is a need for quicker, simpler, and less costly MRI protocols. Objective: To compare the diagnostic performance of monoplanar (“fast” biparametric MRI [bp-MRI]) and triplanar noncontrast bp-MRI with that of the current contrast-enhanced multiparametric MRI (mp-MRI) in the detection of high-grade PCa in biopsy-naïve men. Design, setting, and participants: A prospective, multireader, head-to-head study included 626 biopsy-naïve men, between February 2015 and February 2018. Intervention: Men underwent prebiopsy contrast-enhanced mp-MRI. Prior to biopsy, two blinded expert readers subsequently assessed “fast” bp-MRI, bp-MRI, and mp-MRI. Thereafter, systematic transrectal ultrasound-guided biopsies (SBs) were performed. Men with suspicious mp-MRI (Prostate Imaging Reporting and Data System 3–5 lesions) also underwent MR-in-bore biopsy (MRGB). Outcome measurements and statistical analysis: Primary outcome was the diagnostic performance of each protocol for the detection of high-grade PCa. Secondary outcomes included the difference in biopsy avoidance, detection of low-grade PCa, acquisition times, decision curve analyses, inter-reader agreement, and direct costs. Results from combined MRGB and SB were used as the reference standard. High-grade PCa was defined as grade 2. Results and limitations: Sensitivity for high-grade PCa for all protocols was 95% (180/ 190; 95% confidence interval [CI]: 91–97%). Specificity was 65% (285/436; 95% CI: 61–70%) for “fast” bp-MRI and 69% (299/436; 95% CI: 64–73%) for bp-MRI and mp-MRI. With fast bp-MRI, 0.96% (6/626) more low-grade PCa was detected. Biopsy could be avoided in 47% for the fast bp-MRI and in 49% for the bp-MRI and mp-MRI protocols. Fast bp-MRI and bp-MRI can be performed in 8 and 13 min, respectively, instead of 16

    Integrating multiparametric prostate MRI into clinical practice

    No full text

    Bony metastases: assessing response to therapy with whole-body diffusion MRI

    No full text
    There are no universally accepted methods for assessing tumour response in skeletal sites with metastatic disease; response is assessed by a combination of imaging tests, serum and urine biochemical markers and symptoms assessments. Whole-body diffusion magnetic resonance imaging excels at bone marrow assessments at diagnosis and for therapy evaluations. It can potentially address unmet clinical and pharmaceutical needs for a reliable measure of tumour response. Signal intensity on high b-value images and apparent diffusion coefficient values can be related to underlying biophysical properties of skeletal metastases. Four patterns of change in response to therapy are described this review. Therapy response criteria need to be tested in prospective clinical studies that incorporate conventional measures of patient benefit

    Magnetic Resonance Imaging before Prostate Biopsy : Time to Talk

    No full text
    MRI directed prostate biopsy will change the cancer risk profiles of diagnosed patients, towards those requiring radical treatments. Increased costs can be balanced by improvements in the efficiency of the patient pathway. Effective communication of imaging findings and improved urological understanding of imaging limitations will improve the quality of care for prostate cancer patients

    Prostate Imaging-Reporting and Data System Steering Committee: PI-RADS v2 Status Update and Future Directions

    Get PDF
    Contains fulltext : 203381.pdf (publisher's version ) (Open Access)CONTEXT: The Prostate Imaging-Reporting and Data System (PI-RADS) v2 analysis system for multiparametric magnetic resonance imaging (mpMRI) detection of prostate cancer (PCa) is based on PI-RADS v1, accumulated scientific evidence, and expert consensus opinion. OBJECTIVE: To summarize the accuracy, strengths and weaknesses of PI-RADS v2, discuss pathway implications of its use and outline opportunities for improvements and future developments. EVIDENCE ACQUISITION: For this consensus expert opinion from the PI-RADS steering committee, clinical studies, systematic reviews, and professional guidelines for mpMRI PCa detection were evaluated. We focused on the performance characteristics of PI-RADS v2, comparing data to systems based on clinicoradiologic Likert scales and non-PI-RADS v2 imaging only. Evidence selections were based on high-quality, prospective, histologically verified data, with minimal patient selection and verifications biases. EVIDENCE SYNTHESIS: It has been shown that the test performance of PI-RADS v2 in research and clinical practice retains higher accuracy over systematic transrectal ultrasound (TRUS) biopsies for PCa diagnosis. PI-RADS v2 fails to detect all cancers but does detect the majority of tumors capable of causing patient harm, which should not be missed. Test performance depends on the definition and prevalence of clinically significant disease. Good performance can be attained in practice when the quality of the diagnostic process can be assured, together with joint working of robustly trained radiologists and urologists, conducting biopsy procedures within multidisciplinary teams. CONCLUSIONS: It has been shown that the test performance of PI-RADS v2 in research and clinical practice is improved, retaining higher accuracy over systematic TRUS biopsies for PCa diagnosis. PATIENT SUMMARY: Multiparametric magnetic resonance imaging (MRI) and MRI-directed biopsies using the Prostate Imaging-Reporting and Data System improves the detection of prostate cancers likely to cause harm, and at the same time decreases the detection of disease that does not lead to harms if left untreated. The keys to success are high-quality imaging, reporting, and biopsies by radiologists and urologists working together in multidisciplinary teams

    Quantitative analysis of dynamic contrast-enhanced MR images based on bayesian P-splines

    No full text
    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is an important tool for detecting subtle kinetic changes in cancerous tissue. Quantitative analysis of DCE-MRI typically involves the convolution of an arterial input function (AIF) with a nonlinear pharmacokinetic model of the contrast agent concentration. Parameters of the kinetic model are biologically meaningful, but the optimization of the nonlinear model has significant computational issues. In practice, convergence of the optimization algorithm is not guaranteed and the accuracy of the model fitting may be compromised. To overcome these problems, this paper proposes a semi-parametric penalized spline smoothing approach, where the AIF is convolved with a set of B -splines to produce a design matrix using locally adaptive smoothing parameters based on Bayesian penalized spline models (P-splines). It has been shown that kinetic parameter estimation can be obtained from the resulting deconvolved response function, which also includes the onset of contrast enhancement. Detailed validation of the method, both with simulated and in vivo data, is provided

    The Suppression of Samuel Bamford's Peterloo Poems

    Full text link
    Contains fulltext : 205506.pdf (publisher's version ) (Closed access
    • …
    corecore