175 research outputs found

    Improving on whole-brain radiotherapy in patients with large brain metastases: a planning study to support the AROMA clinical trial

    Get PDF
    PURPOSE: To develop a novel dose-escalated volumetric modulated arc therapy (VMAT) strategy for patients with single or multiple large brain metastases which can deliver a higher dose to individual lesions for better local control (LC), and to compare dosimetry between whole brain radiotherapy (WBRT), hippocampal-sparing whole brain radiotherapy (HS-WBRT) and different VMAT-based focal radiotherapy approaches. METHODS AND MATERIALS: We identified 20 patients with one to ten brain metastases and at least one lesion larger than 15 cm3 who had received WBRT as part of routine care. For each patient, we designed and evaluated five radiotherapy treatment plans, including WBRT, HS-WBRT and three VMAT dosing models. A dose of 20 Gy in 5 fractions was prescribed to the whole brain or target volumes depending on the plan, with higher doses to smaller lesions and dose-escalated inner planning target volumes (DE-iPTV) in VMAT plans, respectively. Treatment plans were evaluated using the efficiency index, mean dose and D0.1cc to the target volumes and organs at risk. RESULTS: Compared with WBRT, VMAT plans achieved a significantly more efficient dose distribution in brain lesions, especially with our DE-iPTV model, while minimising the dose to the normal brain and other organs at risks (OARs) (p < 0.05). CONCLUSIONS: VMAT plans obtained higher doses to brain metastases and minimised doses to OARs. Dose-escalated VMAT for larger lesions allows higher radiotherapy doses to be delivered to larger lesions while maintaining safe doses to OARs

    The impact of unscheduled gaps and iso-centre sequencing on the biologically effective dose in Gamma Knife radiosurgery.

    Get PDF
    PURPOSE: Establish the impact of iso-centre sequencing and unscheduled gaps in Gamma Knife® (GK) radiosurgery on the biologically effective dose (BED). METHODS: A BED model was used to study BED values on the prescription iso-surface of patients treated with GK Perfexion™ (Vestibular Schwannoma). The effect of a 15 min gap, simulated at varying points in the treatment delivery, and adjustments to the sequencing of iso-centre delivery, based on average dose-rate, was quantified in terms of the impact on BED. RESULTS: Depending on the position of the gap and the average dose-rate profiles, the mean BED values were decreased by 0.1% to 9.9% of the value in the original plan. A heuristic approach to iso-centre sequencing showed variations in BED of up to 14.2%, relative to the mean BED of the original sequence. CONCLUSIONS: The treatment variables, like the iso-centre sequence and unscheduled gaps, should be considered during GK radiosurgery treatments

    Stereotactic Radiosurgery for Postoperative Spine Malignancy: A Systematic Review and International Stereotactic Radiosurgery Society Practice Guidelines.

    Get PDF
    To determine safety and efficacy of postoperative spine stereotactic body radiation therapy (SBRT) in the published literature, and to present practice recommendations on behalf of the International Stereotactic Radiosurgery Society. A systematic review of the literature was performed, specific to postoperative spine SBRT, using PubMed and Embase databases. A meta-analysis for 1-year local control (LC), overall survival (OS), and vertebral compression fracture probability was conducted. The literature search revealed 251 potentially relevant articles after duplicates were removed. Of these 56 were reviewed in-depth for eligibility and 12 met all the inclusion criteria for analysis. 7 studies were retrospective, 2 prospective observational and 3 were prospective phase 1 and 2 clinical trials. Outcomes for a total of 461 patients and 499 spinal segments were reported. Ten studies used a magnetic resonance imaging (MRI) scan fused to computed tomography (CT) simulation for treatment planning, and 2 investigations reported on all patients receiving a CT-myelogram at the time of planning. Meta-analysis for 1 year LC and OS was 88.9% and 57%, respectively. The crude reported vertebral compression fracture rate was 5.6%. One case of myelopathy was described in a patient with a previously irradiated spinal segment. One patient developed an esophageal fistula requiring surgical repair. Postoperative spine SBRT delivers a high 1-year LC with acceptably low toxicity. Patients who may benefit from this include those with oligometastatic disease, radioresistant histology, paraspinal masses, or those with a history of prior irradiation to the affected spinal segment. The International Stereotactic Radiosurgery Society recommends a minimum interval of 8 to 14 days after invasive surgery before simulation for SBRT, with initiation of radiation therapy within 4 weeks of surgery. An MRI fused to the planning CT, or the use of a CT-myelogram, are necessary for target and organ-at-risk delineation. A planning organ-at-risk volume (PRV) of 1.5 to 2 mm for the spinal cord is advised

    Segmentation of vestibular schwannoma from MRI, an open annotated dataset and baseline algorithm

    Get PDF
    Automatic segmentation of vestibular schwannomas (VS) from magnetic resonance imaging (MRI) could significantly improve clinical workflow and assist patient management. We have previously developed a novel artificial intelligence framework based on a 2.5D convolutional neural network achieving excellent results equivalent to those achieved by an independent human annotator. Here, we provide the first publicly-available annotated imaging dataset of VS by releasing the data and annotations used in our prior work. This collection contains a labelled dataset of 484 MR images collected on 242 consecutive patients with a VS undergoing Gamma Knife Stereotactic Radiosurgery at a single institution. Data includes all segmentations and contours used in treatment planning and details of the administered dose. Implementation of our automated segmentation algorithm uses MONAI, a freely-available open-source framework for deep learning in healthcare imaging. These data will facilitate the development and validation of automated segmentation frameworks for VS and may also be used to develop other multi-modal algorithmic models

    ISRS Technical Guidelines for Stereotactic Radiosurgery: Treatment of Small Brain Metastases (≤1 cm in Diameter).

    Get PDF
    The objective of this literature review was to develop International Stereotactic Radiosurgery Society (ISRS) consensus technical guidelines for the treatment of small, ≤1 cm in maximal diameter, intracranial metastases with stereotactic radiosurgery. Although different stereotactic radiosurgery technologies are available, most of them have similar treatment workflows and common technical challenges that are described. A systematic review of the literature published between 2009 and 2020 was performed in Pubmed using the Preferred Reporting Items for Systematic Review and Meta-analyses (PRISMA) methodology. The search terms were limited to those related to radiosurgery of brain metastases and to publications in the English language. From 484 collected abstract 37 articles were included into the detailed review and bibliographic analysis. An additional 44 papers were identified as relevant from a search of the references. The 81 papers, including additional 7 international guidelines, were deemed relevant to at least one of five areas that were considered paramount for this report. These areas of technical focus have been employed to structure these guidelines: imaging specifications, target volume delineation and localization practices, use of margins, treatment planning techniques, and patient positioning. This systematic review has demonstrated that Stereotactic Radiosurgery (SRS) for small (1 cm) brain metastases can be safely performed on both Gamma Knife (GK) and CyberKnife (CK) as well as on modern LINACs, specifically tailored for radiosurgical procedures, However, considerable expertise and resources are required for a program based on the latest evidence for best practice

    Stereotactic radiosurgery for secretory pituitary adenomas: systematic review and International Stereotactic Radiosurgery Society practice recommendations.

    Get PDF
    A systematic review was performed to provide objective evidence on the use of stereotactic radiosurgery (SRS) in the management of secretory pituitary adenomas and develop consensus recommendations. The authors performed a systematic review of the English-language literature up until June 2018 using the PRISMA guidelines. The PubMed (Medline), Embase, and Cochrane databases were searched. A total of 45 articles reporting single-institution outcomes of SRS for acromegaly, Cushing's disease, and prolactinomas were selected and included in the analysis. For acromegaly, random effects meta-analysis estimates for crude tumor control rate, crude endocrine remission rate, and any new hypopituitarism rates were 97.0% (95% CI 96.0%-98.0%), 44.0% (95% CI 35.0%-53.0%), and 17.0% (95% CI 13.0%-23.0%), respectively. For Cushing's disease, random effects estimates for crude tumor control rate, crude endocrine remission rate, and any new hypopituitarism rate were 92.0% (95% CI 87.0%-95.0%), 48.0% (95% CI 35.0%-61.0%), and 21.0% (95% CI 13.0%-31.0%), respectively. For prolactinomas, random effects estimates for crude tumor control rate, crude endocrine remission rate, and any new hypopituitarism rate were 93.0% (95% CI 90.0%-95.0%), 28.0% (95% CI 19.0%-39.0%), and 12.0% (95% CI 6.0%-24.0%), respectively. Meta-regression analysis did not show a statistically significant association between mean margin dose with crude endocrine remission rate or mean margin dose with development of any new hypopituitarism rate for any of the secretory subtypes. SRS offers effective tumor control of hormone-producing pituitary adenomas in the majority of patients but a lower rate of endocrine improvement or remission

    A Systematic Review Informing the Management of Symptomatic Brain Radiation Necrosis After Stereotactic Radiosurgery and International Stereotactic Radiosurgery Society Recommendations.

    Get PDF
    Radiation necrosis (RN) secondary to stereotactic radiosurgery is a significant cause of morbidity. The optimal management of corticosteroid-refractory brain RN remains unclear. Our objective was to summarize the literature specific to efficacy and toxicity of treatment paradigms for patients with symptomatic corticosteroid-refractory RN and to provide consensus guidelines for grading and management of RN on behalf of the International Stereotactic Radiosurgery Society. A systematic review of articles pertaining to treatment of RN with bevacizumab, laser interstitial thermal therapy (LITT), surgical resection, or hyperbaric oxygen therapy was performed. The primary composite outcome was clinical and/or radiologic stability/improvement (ie, proportion of patients achieving improvement or stability with the given intervention). Proportions of patients achieving the primary outcome were pooled using random weighted-effects analysis but not directly compared between interventions. Twenty-one articles were included, of which only 2 were prospective studies. Thirteen reports were relevant for bevacizumab, 5 for LITT, 5 for surgical resection and 1 for hyperbaric oxygen therapy. Weighted effects analysis revealed that bevacizumab had a pooled symptom improvement/stability rate of 86% (95% CI 77%-92%), pooled T2 imaging improvement/stability rate of 93% (95% CI 87%-98%), and pooled T1 postcontrast improvement/stability rate of 94% (95% CI 87%-98%). Subgroup analysis showed a statistically significant improvement favoring treatment with low-dose (below median, ≤7.5 mg/kg every 3 weeks) versus high-dose bevacizumab with regards to symptom improvement/stability rate (P = .02) but not for radiologic T1 or T2 changes. The pooled T1 postcontrast improvement/stability rate for LITT was 88% (95% CI 82%-93%), and pooled symptom improvement/stability rate for surgery was 89% (95% CI 81%-96%). Toxicity was inconsistently reported but was generally low for all treatment paradigms. Corticosteroid-refractory RN that does not require urgent surgical intervention, with sufficient noninvasive diagnostic testing that favors RN, can be treated medically with bevacizumab in carefully selected patients as a strong recommendation. The role of LITT is evolving as a less invasive image guided surgical modality; however, the overall evidence for each modality is of low quality. Prospective head-to-head comparisons are needed to evaluate the relative efficacy and toxicity profile among treatment approaches

    Variable dose interplay effects across radiosurgical apparatus in treating multiple brain metastases

    Get PDF
    PURPOSE: Normal brain tissue doses have been shown to be strongly apparatus dependent for multi-target stereotactic radiosurgery. In this study, we investigated whether inter-target dose interplay effects across contemporary radiosurgical treatment platforms are responsible for such an observation. METHODS: For the study, subsets ([Formula: see text] and 12) of a total of 12 targets were planned at six institutions. Treatment platforms included the (1) Gamma Knife Perfexion (PFX), (2) CyberKnife, (3) Novalis linear accelerator equipped with a 3.0-mm multi-leaf collimator (MLC), and the (4) Varian Truebeam flattening-filter-free (FFF) linear accelerator also equipped with a 2.5 mm MLC. Identical dose–volume constraints for the targets and critical structures were applied for each apparatus. All treatment plans were developed at individual centers, and the results were centrally analyzed. RESULTS: We found that dose–volume constraints were satisfied by each apparatus with some differences noted in certain structures such as the lens. The peripheral normal brain tissue doses were lowest for the PFX and highest for TrueBeam FFF and CyberKnife treatment plans. Comparing the volumes of normal brain receiving 12 Gy, TrueBeam FFF, Novalis, and CyberKnife were 180–290 % higher than PFX. The mean volume of normal brain-per target receiving 4-Gy increased by approximately 3.0 cc per target for TrueBeam, 2.7 cc per target for CyberKnife, 2.0 cc per target for Novalis, and 0.82 cc per target for PFX. The beam-on time was shortest with the TrueBeam FFF (e.g., 6–9 min at a machine output rate of 1,200 MU/min) and longest for the PFX (e.g., 50–150 mins at a machine output rate of 350 cGy/min). CONCLUSION: The volumes of normal brain receiving 4 and 12 Gy were higher, and increased more swiftly per target, for Linac-based SRS platforms than for PFX. Treatment times were shortest with TrueBeam FFF

    Cognitive domains affected post-COVID-19; a systematic review and meta-analysis

    Get PDF
    \ua9 2024 The Authors. European Journal of Neurology published by John Wiley &amp; Sons Ltd on behalf of European Academy of Neurology.Background and purpose: This review aims to characterize the pattern of post-COVID-19 cognitive impairment, allowing better prediction of impact on daily function to inform clinical management and rehabilitation. Methods: A systematic review and meta-analysis of neurocognitive sequelae following COVID-19 was conducted, following PRISMA-S guidelines. Studies were included if they reported domain-specific cognitive assessment in patients with COVID-19 at &gt;4 weeks post-infection. Studies were deemed high-quality if they had &gt;40 participants, utilized healthy controls, had low attrition rates and mitigated for confounders. Results: Five of the seven primary Diagnostic and Statistical Manual of Mental Disorders (DSM-5) cognitive domains were assessed by enough high-quality studies to facilitate meta-analysis. Medium effect sizes indicating impairment in patients post-COVID-19 versus controls were seen across executive function (standardised mean difference (SMD) −0.45), learning and memory (SMD −0.55), complex attention (SMD −0.54) and language (SMD −0.54), with perceptual motor function appearing to be impacted to a greater degree (SMD −0.70). A narrative synthesis of the 56 low-quality studies also suggested no obvious pattern of impairment. Conclusions: This review found moderate impairments across multiple domains of cognition in patients post-COVID-19, with no specific pattern. The reported literature was significantly heterogeneous, with a wide variety of cognitive tasks, small sample sizes and disparate initial disease severities limiting interpretability. The finding of consistent impairment across a range of cognitive tasks suggests broad, as opposed to domain-specific, brain dysfunction. Future studies should utilize a harmonized test battery to facilitate inter-study comparisons, whilst also accounting for the interactions between COVID-19, neurological sequelae and mental health, the interplay between which might explain cognitive impairment

    The Inviscid Limit and Boundary Layers for Navier-Stokes Flows

    Full text link
    The validity of the vanishing viscosity limit, that is, whether solutions of the Navier-Stokes equations modeling viscous incompressible flows converge to solutions of the Euler equations modeling inviscid incompressible flows as viscosity approaches zero, is one of the most fundamental issues in mathematical fluid mechanics. The problem is classified into two categories: the case when the physical boundary is absent, and the case when the physical boundary is present and the effect of the boundary layer becomes significant. The aim of this article is to review recent progress on the mathematical analysis of this problem in each category.Comment: To appear in "Handbook of Mathematical Analysis in Mechanics of Viscous Fluids", Y. Giga and A. Novotn\'y Ed., Springer. The final publication is available at http://www.springerlink.co
    corecore