13 research outputs found

    Imaging synaptic plasticity

    Get PDF
    Over the past decade, the use and development of optical imaging techniques has advanced our understanding of synaptic plasticity by offering the spatial and temporal resolution necessary to examine long-term changes at individual synapses. Here, we review the use of these techniques in recent studies of synaptic plasticity and, in particular, long-term potentiation in the hippocampus

    Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber

    Get PDF
    Achieving intravital optical imaging with diffraction-limited spatial resolution of deep-brain structures represents an important step toward the goal of understanding the mammalian central nervous system1,2,3,4. Advances in wavefront-shaping methods and computational power have recently allowed for a novel approach to high-resolution imaging, utilizing deterministic light propagation through optically complex media and, of particular importance for this work, multimode optical fibers (MMFs)5,6,7. We report a compact and highly optimized approach for minimally invasive in vivo brain imaging applications. The volume of tissue lesion was reduced by more than 100-fold, while preserving diffraction-limited imaging performance utilizing wavefront control of light propagation through a single 50-μm-core MMF. Here, we demonstrated high-resolution fluorescence imaging of subcellular neuronal structures, dendrites and synaptic specializations, in deep-brain regions of living mice, as well as monitored stimulus-driven functional Ca2+ responses. These results represent a major breakthrough in the compromise between high-resolution imaging and tissue damage, heralding new possibilities for deep-brain imaging in vivo

    Synaptic Transmission Optimization Predicts Expression Loci of Long-Term Plasticity

    Get PDF
    Long-term modifications of neuronal connections are critical for reliable memory storage in the brain. However, their locus of expression—pre- or postsynaptic—is highly variable. Here we introduce a theoretical framework in which long-term plasticity performs an optimization of the postsynaptic response statistics toward a given mean with minimal variance. Consequently, the state of the synapse at the time of plasticity induction determines the ratio of pre- and postsynaptic modifications. Our theory explains the experimentally observed expression loci of the hippocampal and neocortical synaptic potentiation studies we examined. Moreover, the theory predicts presynaptic expression of long-term depression, consistent with experimental observations. At inhibitory synapses, the theory suggests a statistically efficient excitatory-inhibitory balance in which changes in inhibitory postsynaptic response statistics specifically target the mean excitation. Our results provide a unifying theory for understanding the expression mechanisms and functions of long-term synaptic transmission plasticity

    Activity-Dependent Exocytosis of Lysosomes Regulates the Structural Plasticity of Dendritic Spines

    Get PDF
    Lysosomes have traditionally been viewed as degradative organelles, though a growing body of evidence suggests that they can function as Ca2+ stores. Here, we examined the function of these stores in hippocampal pyramidal neurons. We found that back-propagating action potentials (bpAPs) could elicit Ca2+ release from lysosomes in the dendrites. This Ca2+ release triggered the fusion of lysosomes with the plasma membrane, resulting in the release of Cathepsin B. Cathepsin B increased the activity of matrix metalloproteinase 9 (MMP-9), an enzyme involved in extracellular matrix (ECM) remodelling and synaptic plasticity. Inhibition of either lysosomal Ca2+ signalling or Cathepsin B release prevented the maintenance of dendritic spine growth induced by Hebbian activity. This impairment could be rescued by exogenous application of active MMP-9. Our findings suggest that activity-dependent exocytosis of Cathepsin B from lysosomes regulates the long-term structural plasticity of dendritic spines by triggering MMP-9 activation and ECM remodelling

    Mechanisms of long-term presynaptic plasticity at Schaffer-collateral synapses

    No full text
    Synaptic plasticity is thought to be integral to learning and memory. The two most common forms of plasticity are long-term potentiation (LTP) and long-term depression (LTD), both of which can be supported either by presynaptic changes in transmitter release probability (Pr), or by postsynaptic changes in AMPA receptor number. It is generally thought that the induction of LTP and LTD at Schaffer-collateral synapses in the hippocampus depends on the activation of NMDA receptors (GluN). Recent studies, however, have demonstrated that both increases and decreases in Pr can be induced under blockade of postsynaptic GluN receptors, suggesting that the activation of postsynaptic GluN receptors by glutamate is only a strict requirement for postsynaptic plasticity. In this thesis, I therefore re-examined the role of glutamate in presynaptic plasticity. I used single synapse imaging along with electrophysiological and pharmacological techniques to independently manipulate and monitor the levels of glutamatergic signalling during synaptic activity. I discovered that glutamate is inhibitory and unnecessary for the induction of LTP at the presynaptic locus. My findings support a novel model of presynaptic plasticity in which the net activity-dependent changes in Pr at an active presynaptic terminal is jointly determined by two opposing processes that can be simultaneously active: 1) postsynaptic depolarization, which, via the activation of L-type voltage-gated Ca2+ channels, increases Pr by driving the synthesis and release of nitric oxide from neuronal dendrites and 2) glutamate release, which through the activation of presynaptic GluN receptors, decreases Pr. Computationally, this model suggests that plasticity functions to reduce prediction-errors that arise during synaptic activity, and, thereby offers a biologically plausible mechanism by which neuronal networks may optimize learning at the level of single synapses.</p

    Mechanisms of long-term presynaptic plasticity at Schaffer-collateral synapses

    No full text
    Synaptic plasticity is thought to be integral to learning and memory. The two most common forms of plasticity are long-term potentiation (LTP) and long-term depression (LTD), both of which can be supported either by presynaptic changes in transmitter release probability (Pr), or by postsynaptic changes in AMPA receptor number. It is generally thought that the induction of LTP and LTD at Schaffer-collateral synapses in the hippocampus depends on the activation of NMDA receptors (GluN). Recent studies, however, have demonstrated that both increases and decreases in Pr can be induced under blockade of postsynaptic GluN receptors, suggesting that the activation of postsynaptic GluN receptors by glutamate is only a strict requirement for postsynaptic plasticity. In this thesis, I therefore re-examined the role of glutamate in presynaptic plasticity. I used single synapse imaging along with electrophysiological and pharmacological techniques to independently manipulate and monitor the levels of glutamatergic signalling during synaptic activity. I discovered that glutamate is inhibitory and unnecessary for the induction of LTP at the presynaptic locus. My findings support a novel model of presynaptic plasticity in which the net activity-dependent changes in Pr at an active presynaptic terminal is jointly determined by two opposing processes that can be simultaneously active: 1) postsynaptic depolarization, which, via the activation of L-type voltage-gated Ca2+ channels, increases Pr by driving the synthesis and release of nitric oxide from neuronal dendrites and 2) glutamate release, which through the activation of presynaptic GluN receptors, decreases Pr. Computationally, this model suggests that plasticity functions to reduce prediction-errors that arise during synaptic activity, and, thereby offers a biologically plausible mechanism by which neuronal networks may optimize learning at the level of single synapses.</p

    Paying the brain’s energy bill

    Get PDF

    Inhibition of lysosomal Ca2+ signalling disrupts dendritic spine structure and impairs wound healing in neurons

    No full text
    A growing body of evidence suggests that lysosomes, which have traditionally been regarded as degradative organelles, can function as Ca2+ stores, regulated by the second messenger nicotinic acid adenine dinucleotide phosphate (NAADP). We previously demonstrated that in hippocampal pyramidal neurons, activity-dependent Ca2+ release from these stores triggers fusion of the lysosome with the plasma membrane. We found that the physiological role of this Ca2+-dependent fusion was to maintain the long-term structural enlargement of dendritic spines induced by synaptic activity. Here, we examined the pathophysiological consequences of lysosomal dysfunction in hippocampal pyramidal neurons by chronically inhibiting lysosomal Ca2+ signalling using the NAADP antagonist, NED-19. We found that within just 20 hours, inhibition of lysosomal function led to a profound intracellular accumulation of lysosomal membrane. This was accompanied by a significant change in dendritic spine structure, which included a lengthening of dendritic spines, an increase in the number of filipodia, and an overall decrease in spine number. Inhibition of lysosomal function also inhibited wound healing in neurons by preventing lysosomal fusion with the plasma membrane. Neurons were therefore more susceptible to injury. Our findings suggest that dysfunction in lysosomal Ca2+ signalling and lysosomal fusion with the plasma membrane may contribute to the loss of dendritic spines and neurons seen in neurological disorders, such as Niemann-Pick disease type C1, in which lysosomal function is impaired

    Inhibition of lysosomal Ca 2+

    No full text
    corecore