
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Paying the brain’s energy bill

Citation for published version:
Padamsey, Z & Rochefort, NL 2022, 'Paying the brain’s energy bill', Current Opinion in Neurobiology.
https://doi.org/10.1016/j.conb.2022.102668

Digital Object Identifier (DOI):
10.1016/j.conb.2022.102668

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Current Opinion in Neurobiology

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 19. May. 2023

https://doi.org/10.1016/j.conb.2022.102668
https://doi.org/10.1016/j.conb.2022.102668
https://www.research.ed.ac.uk/en/publications/b354d811-4eb6-437f-8051-58acc57ffe3d


Available online at www.sciencedirect.com

ScienceDirect
Current Opinion in

Neurobiology
Perspective
Paying the brain’s energy bill
Zahid Padamsey1 and Nathalie L. Rochefort1,2
Abstract

How have animals managed to maintain metabolically expen-
sive brains given the volatile and fleeting availability of calories
in the natural world? Here we review studies in support of three
strategies that involve: 1) a reallocation of energy from pe-
ripheral tissues and functions to cover the costs of the brain, 2)
an implementation of energy-efficient neural coding, enabling
the brain to operate at reduced energy costs, and 3) efficient
use of costly neural resources during food scarcity. Collec-
tively, these studies reveal a heterogeneous set of energy-
saving mechanisms that make energy-costly brains fit for
survival.
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Introduction
The brain is metabolically expensive. In humans, the
brain consumes approximately 20% of our metabolic
energy, despite comprising only 2% of our body mass,
making it amongst the most energetically costly organs
in the body (Figure 1a) [1,2]. How have animals
evolved to maintain their expensive brains? One pos-
sibility is that the evolution and expansion of the brain
coincided with, or even facilitated, an increase in cal-
orie intake that would cover the costs of the brain
(reviewed in Ref. [3]). Whilst there is evidence to

suggest this is true to some extent e for example,
larger-brained animals generally consume more calories
than smaller-brained ones [3,4] - the availability of
www.sciencedirect.com
calories in the natural world can be volatile and fleeting
[5e8], and the operational costs of the brain can also
fluctuate depending on cognitive demand [9e12].
Additional strategies have therefore likely evolved to
maintain expensive brains across unpredictable times
and conditions. Here we present evidence in support of
three such strategies: 1) a reallocation of energy from
peripheral tissues and functions to fuel brain activity, 2)
implementation of energy-efficient neural coding,
enabling the brain to operate at reduced energy costs,
and 3) efficient use of costly neural resources during
food scarcity.
Reallocation of energy from peripheral
tissues and functions to fuel brain activity
According to the Expensive Brain Hypothesis [13], and
related hypotheses, the evolution and expansion of the

brain was likely paid for, at least in part, by reducing the
size of other metabolically expensive tissue, such as
skeletal muscle, or other expensive processes, such as
growth and reproduction (reviewed in detail in
Ref. [3]). Several lines of evidence support this. For
example, 1) brain size is inversely correlated with pec-
toral mass in birds [14], and is also inversely correlated
with muscle use, and therefore smaller in migratory
species compared to sedentary ones [15,16]. 2) Gesta-
tional age is increased in larger-brained animals and
growth rate is reduced [3,17,18], particularly during the

development of the brain. Indeed, in humans, growth
rate falls to a minimum during early childhood (around
the age of five), when synaptic density peaks and the
brain’s energy demand comprises approximately 45% of
caloric intake, which reflects a twofold greater rate of
glucose consumption than the adult brain [19]. 3)
Finally, reproduction is more delayed and less frequent
in larger-brained species compared to smaller-brained
ones [3,13,20].

Energy trade-offs are also required to support the

operational costs of the brain, which are not constant
across the lifespan [9,10,12]. Learning and memory
formation, for example, incurs significant energy costs,
which have been well elucidated in insects. Indeed in
honey bees, appetitive odour conditioning is accom-
panied by a 20% reduction in trehalose, which is the
main energy substrate in insects [9]. Similarly in
Drosophila, aversive conditioning is accompanied by an
over two fold increase in caloric intake [10], as well as
an increased energy consumption in the mushroom
Current Opinion in Neurobiology 2023, 78:102668
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Figure 1

The brain is energetically expensive given its mass. Depicted are pie charts showing the relative mass (left; % of total body mass) and relative levels of
resting energy consumption (right; % of total energy consumption at rest) of various organs in the human body. The brain’s relative mass and resting
energy expenditure are depicted in blue. (Data from Ref. [1], brain image from doi.org/10.5281/zenodo.3925989).

2 Metabolic underpinnings of normal and diseased neural function 2023
bodies, which is both necessary and sufficient for long-
term memory formation [10]. Conditioning is also
accompanied by an increase in glial transport of glucose
to mushroom body neurons, where it is used in the
pentose phosphate pathway to produce NADPH,
potentially to reduce the oxidative stress associated
with increased mitochondrial respiration [21,22]. In
mammals, learning and memory also incurs significant

energetic costs. For example, in rats performing a
spontaneous alternation task, which requires spatial
working memory, glucose levels are selectively
decreased within the hippocampus. The level of
decrease scales with task difficulty: glucose is reduced
by 11% during a three-arm maze and by 32% during a
more challenging four-arm maze [11]. Task perfor-
mance is also limited by glucose levels, and is therefore
improved with prior glucose supplementation [11].
Recently, hippocampal sharp wave ripples, which are
important for memory and working memory functions
[23,24], have been shown to trigger decreases in sys-

temic glucose levels via a pathway involving the lateral
septum, a critical node of communication between the
hippocampus and the hypothalamus [25]. These find-
ings suggest that peripheral metabolic state and
cognitive functions are intimately coupled.

The metabolic cost of learning and memory is paid for, in
part, by trade-offs in peripheral functions. This is well
established in invertebrates. For example, long-term
memory formation: 1) impairs survival during extreme
food and/orwater deprivation inDrosophila and honeybees
Current Opinion in Neurobiology 2023, 78:102668
[9,26], 2) impairs survival during immune challenge in
honey bees [9], 3) reduces life-time fecundity in
Drosophila and butterflies [27,28], and 4) delays the age of
maturation in predatory mites [29] (Figure 2). Moreover,
Drosophila and butterflies that have been bred to excel at
learninge specifically, learning a target substrate for egg-
laying - have reduced lifespan [30], impaired reproduc-
tive ability [27,30], and bear larvaewith reduced ability to

compete for food [31]. Conversely, learning is impaired in
flies that are either innately long-lived [30] or resistant to
nutritional stress [32], and in butterflies with faster
reproductive development [27].

In contrast to invertebrates, less is known about the
trade-offs incurred by learning and memory in verte-
brates. One study, however, has shown that guppies,
artificially selected to have larger brains and an improved
performance on a numerical learning test, produce fewer
offspring [20]. This suggests that similar trade-offs in
peripheral functions may operate across species to fuel

brain function. Of importance would be to establish to
what extent learning and memory impacts peripheral
functions in mammals. This could be done, for example,
by assessing the life span and fecundity of mice exposed
to daily or weekly learning tasks (for example, a behav-
ioural task with changing rules), ideally across the life
span, and comparing it to respective controls (for
example, the same task without changing rules).

Collectively, these studies suggest that brain function
comes at a cost of peripheral tissue and functions.
www.sciencedirect.com
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Figure 2

The cost of learning across species. (a) In Drosophila, learning an odour-shock pairings reduce survival when challenged with food and water restriction
[26]. Learning which of two egg-laying substrates contains quinine reduces fecundity (i.e. number of eggs laid) [28]. (b) In honey bees, learning an odour-
sucrose pairing reduces survival during food deprivation or in response to an immune challenge [9]. (c) In butterflies, learning a preference for an egg-
laying substrate (red vs. green foliage) reduces fecundity [27]. (d) In predatory mites, leaning a preference for prey (thrips vs. spider mites) early in
development delays the age of maturation [29]. (Drosophila image from doi.org/10.5281/zenodo.3926137).
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4 Metabolic underpinnings of normal and diseased neural function 2023
Energy-efficient neural coding enables the
brain to operate at a lower energy cost
Accumulating evidence indicates that the brain operates
energetically efficiently, enabling it to operate with
reduced energy use [33]. Thus, whilst the brain is
metabolically expensive, its cost reflects a lower bound
required for function. A sizeable fraction of the brain’s
energy expenses are used to support electrical signalling,
specifically to reverse the Naþ influxes associated with
electrical activity via the action of the Naþ/Kþ ATPase
pump [34,35] at the cost of 1 ATPper 3Naþ extruded. In
mammalian brains, the principal drivers of ion fluxes
across the membrane in grey matter are excitatory syn-

aptic signalling and action potentials, which respectively
comprise approximately 57% and 23% of the brain’s
energy budget for electrical signalling [35e37]. Accord-
ing to the efficient coding framework, electrical signal-
ling in the brain, has evolved to maximize the amount of
information transmitted per molecule of ATP (i.e. bits/
ATP) [33,38e41]. This framework accounts for a
number of experimentally observed features of the brain,
including the low mean firing rates of neurons [33].
Indeed, given that 1) information transmission (bits/s)
increases sub-linearly as firing rate increases, and 2) ATP

expenditure (ATP/s) increases proportionally with firing
rates, energy efficiency (bits/ATP) is optimized at low
firing rates, which are observed experimentally (�10Hz)
[33,34,40]. These low firing rates are a fraction of the
half-maximal firing rates (approximately 200 Hz) that
would otherwise maximize information transmission
(bits/s), but at a disproportionally higher ATP cost (�20
fold). Energy-efficient coding also accounts for experi-
mentally observed sparse coding strategies, whereby a
given sensory stimulus or action is encoded by elevated
spiking activity in a small proportion of neurons

(<10%) [34,42].

In addition to spiking activity, excitatory synaptic
transmission is also constrained at the synapse to
maximize energy-efficient coding. One striking example
of this is the low release probability with which gluta-
mate, the principal excitatory transmitter in mammalian
brains, is released at central synapses following an action
potential. For example, the release probability at cortical
synapses is approximately 25e50%, which theoretically
maximizes energy-efficiency (bits/ATP) [35,43]. More-

over, at retino-thalamic visual synapses, excitatory
postsynaptic current amplitudes maximize retinal in-
formation transmission per ATP [44]; artificially ampli-
fying currents improves information transmission rates,
but at a disproportionate increase in ATP cost. Similar
findings have been recently reported at thalamo-cortical
synapses [45].

Collectively, these studies suggest that the brain has
evolved energy-efficient coding strategies, enabling it to
operate effectively at lower energy costs.
Current Opinion in Neurobiology 2023, 78:102668
Efficient use of costly neural functions
during food scarcity
Reducing non-essential, costly neural functions to
save energy in times of food scarcity
In 1920, Marie Krieger documented that malnourish-
ment in humans profoundly impacted the weight of a
number of organs, including the heart, liver, kidneys and
spleen, all of which lost approximately 40% of their
mass; the brain, however was negligibly impacted [46].
Similar results were reported for food-deprived rodents
by Villeneuve et al. (1977) and Schärer (1977) [47,48].
These findings would later be replicated by a number of
additional studies over the years, which collectively

would provide support for the Selfish Brain Hypothesis
[49,50]. The hypothesis posits that the brain prioritizes
its own needs over that of peripheral tissue, and does not
(or cannot) reduce its own energy expenditure in times
of need. However, recent, and more detailed recordings
of neuronal activity suggest that the brain is not as
selfish as once thought and can reduce costly, neural
functions when food is scarce.

Energy-saving changes in the brain were first docu-
mented by Plaçais and Preat (2013) [51]. They discov-

ered that in Drosophila the formation of a metabolically
costly form of memory e specifically, long-term, protein-
synthesis dependent memory of odour-shock associations
- was inhibited by starvation (Figure 3a). Mechanistically,
starvation silenced the activity of MV1 and MP1 dopa-
minergic neurons, which gate long-term memory forma-
tion in the fly’s mushroom bodies (Figure 2a). Re-
activation of these neurons via exogenous expression of
thermosensitive cation channels (dTrpA1) restored
memory formation, but significantly impaired survival.
Food deprivation has also been shown to impair long-term

memory formation in honey bees [9] and in
C. elegans [52].

In addition to memory formation, starvation reduces
other aspects of neural function, consistent with energy-
saving adaptations. For example, Longden et al. (2014)
demonstrated that in blowfly, starvation reduced both
visually-evoked and spontaneous spiking in the H2
visual interneuron [53] (Figure 3b). This occurred
specifically during locomotion and resulted in the
impairment of the yaw optomotor response. The effects

of starvation increased with time (1e3 days) but did not
reflect pathophysiology since they were not correlated
with changes in total haemolymph carbohydrate, and
were reversed with one day of refeeding. These findings
suggest that enhanced gain control of sensory responses
during locomotion is suppressed during food restriction,
consistent with reduced energy expenditure.

Recently, we demonstrated that the mammalian
neocortex, which is responsible for over half of brain’s
energy consumption [2], also adapts its energy use and
www.sciencedirect.com
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Figure 3

Energy-saving adaptations in the brain during food scarcity. (a) Starvation in Drosophila leads to an impairment of costly long-term memory formation via
the silencing of MP1 and MV1 dopaminergic neurons to improve survival [51]. (b) Starvation in blowfly compromises the optomotor response by reducing
visually-evoked and spontaneous spiking of the H2 neuron during locomotion; reduced neuronal spiking is consistent with energy savings [53]. (c) Food-
restriction in mice reduces AMPA receptor (AMPAR) conductance in layer 2/3 cortical neurons, resulting in reduced Na+ influx and therefore less ATP
required to restore the ion gradient. Decreased AMPAR conductance is compensated by increases in resting potential and input resistance which
preserve spiking rates but increase subthreshold variability leading to reduced coding precision; this is associated with reduced stimulus discriminability in
behaving animals. Reduction of circulating levels of the fat-mass regulated hormone leptin is necessary for the observed energy-saving changes [54].
(Drosophila image from doi.org/10.5281/zenodo.3926137, Layer 2/3 cortical neuron image from doi.org/10.5281/zenodo.3925905).
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function in response to food scarcity [54] (Figure 3c).
We food restricted male mice to 85% of their body-
weight over the course of 2e3 weeks. We found that this
resulted in 29% reduction in synaptic ATP use in the
visual cortex during visual processing, mediated by a

reduction of postsynaptic AMPA receptor (AMPAR)
currents. This reduced synaptic current was compen-
sated by an increase in resting membrane potential and
input resistance. Whilst these compensatory changes
normalized spike rate to ad libitum fed controls, they also
amplified the trial-to-trial variability of visually-evoked
subthreshold depolarizations, which increased the like-
lihood that smaller depolarizations, elicited by non-
preferred visual stimuli, would cross spike threshold,
resulting in a loss of stimulus selectivity of spike output.
The loss of stimulus selectivity degraded fine coding

precision and was associated with an impaired ability
for food-restricted animals to make fine visual
www.sciencedirect.com
discriminations between visual stimuli. Critically, we
found that energy-saving adaptations in the cortex were
mediated by leptin signalling. Leptin is a hormone that
is secreted by adipocytes in proportion to fat mass [55],
and is therefore reduced with food restriction. Exoge-

nous supplementation of leptin in food-restricted ani-
mals restored stimulus selectivity and coding precision
to control values.

Food restriction may also reduce brain energy expendi-
ture by modulating sleep. In humans, one study found
that calorie restriction increased the proportion of sleep
spent in deep sleep (Stage 4), during which cerebral
oxygen and glucose consumption is reduced compared
to REM sleep or wakefulness [56,57]. Moreover, food
restriction can increase sleep time in rodents, though

this depends on when in the light/dark cycle food be-
comes available [58]. Food restriction also increases the
Current Opinion in Neurobiology 2023, 78:102668
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6 Metabolic underpinnings of normal and diseased neural function 2023
likelihood of entering torpor, a state in which neuronal
and synaptic activity is substantially reduced, along with
whole-body metabolism [59e62].

Overall, these studies establish that costly neuronal
functions are reduced in times of food scarcity, to reduce
energy use and improve survival.

Selective enhancement of useful, costly neural
functions in times of need
Whilst reducing costly neuronal functions in times of need

can save energy, some neural functions are important for
securing food in resource-poor environments; several
studies find that such functions are indeed selectively
enhanced. For example, it is well established that neural
responses to food cues are enhanced selectively during
hunger, but not satiety, in humans [63]. Similar observa-
tions have recently been made in mice, where hunger
enhances the neural responses in brains regions associated
with food cue processing, including the postrhinal cortex,
the lateral amygdala, and the insular cortex [63e65].
These enhancements improve the discriminability of food

vs. non-food visual cues, and are rapidly dissipated
following satiety [64]. Mechanistically, hunger-related
signals from hypothalamic agouti-related peptide
(AgRP)-expressing neurons gate hunger-induced en-
hancements of food cue responses. Indeed, optogenetic
activation of these neurons is sufficient to enhance neural
coding of food cues in sated animals [65]. These signals
are conveyed from the hypothalamus, via the para-
ventricular thalamus and the basolateral amygdala, to the
insular cortex, and potentially to other brain areas [65,66].
Such specific enhancement of neural coding of food cues,

and selectively in times of hunger, reflects an efficient use
of costly neural resources in times of food scarcity.

As with food scarcity, water scarcity is also a metabolic
challenge in which animals can enter a negative energy
balance. Indeed, water deprived animals consume less
food, and therefore, like food-deprived animals, lose
weight and fat mass [67e69]. Notably, as with hunger,
recent studies have noticed a selective, thirst-
dependent enhancement of neural responses to water
cues [66]. Indeed, water cues can trigger increased

neuronal activity in thirsty animals, both within the
insular cortex, and across the cortex, in the context of a
go/no-go task [66,70]. These changes are quenched by
satiety, though can be re-instated via optogenetic acti-
vation of thirst-sensing neurons within the medial
preoptic nucleus (MnPO) or subfornical organ (SFO) of
the hypothalamus [66,70].

Collectively, these studies demonstrate that the use of
costly neural resources is efficiently and selectively
gated by physiological need to maximize the chances of

securing food or water in times of need.
Current Opinion in Neurobiology 2023, 78:102668
Future studies and outlook
Despite recent advances, there are several outstanding

questions regarding brain energy use. For instance,
what mechanisms enable the dynamic reallocation of
energy from peripheral functions to the brain, espe-
cially when the brain’s energy needs increase, such as
during development or learning? Then, in times of
food scarcity, when the brain’s energy demands cannot
be met, how are energy-saving adaptations triggered in
the brain? Are they common across species, or even
across regions of the brain? Are the different energy
saving adaptations described in this review comple-
mentary and used concurrently, or are they mutually

exclusive? Moreover, given that peripheral responses
to food restriction differ between males and females,
and between young and old animals [71], it will be
important to examine the sex- and age-dependencies
of energy-saving adaptations in the brain. Finally,
whilst most studies have focussed on neurons, less is
known about how other cell types such as glia, peri-
cytes, and inhibitory interneurons, contribute to
energy-saving adaptations in the brain. Addressing
these outstanding questions will shed fundamental
insights into the dynamic regulation of brain

energy use.
Conclusion
The brain is one of the most metabolically-expensive
organs in the body. Here were review evidence in sup-

port of several adaptions that enable animals to maintain
expensive brains. First, peripheral tissue and functions
have been sacrificed to support the metabolic need of
the brain. Secondly, the brain has evolved energy-
efficient coding strategies to operate at reduced cost.
Finally, the brain efficiently uses costly neural resources
during food scarcity; this requires both a decrease in
energy expenditure of non-essential neural functions,
and a selective enhancement of useful neural functions
to maximize the chances of finding food and water in
times of need.
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