39 research outputs found

    Lysosomal di-N-acetylchitobiase-deficient mouse tissues accumulate Man2GlcNAc2 and Man3GlcNAc2

    Get PDF
    AbstractMost lysosomal storage diseases are caused by defects in genes encoding for acidic hydrolases. Deficiency of an enzyme involved in the catabolic pathway of N-linked glycans leads to the accumulation of the respective substrate and consequently to the onset of a specific storage disorder. Di-N-acetylchitobiase and core specific α1–6mannosidase represent the only exception. In fact, to date no lysosomal disease has been correlated to the deficiency of these enzymes. We generated di-N-acetylchitobiase-deficient mice by gene targeting of the Ctbs gene in murine embryonic stem cells. Accumulation of Man2GlcNAc2 and Man3GlcNAc2 was evaluated in all analyzed tissues and the tetrasaccharide was detected in urines. Multilamellar inclusion bodies reminiscent of polar lipids were present in epithelia of a scattered subset of proximal tubules in the kidney. Less constantly, enlarged Kupffer cells were observed in liver, filled with phagocytic material resembling partly digested red blood cells. These findings confirm an important role for lysosomal di-N-acetylchitobiase in glycans degradation and suggest that its deficiency could be the cause of a not yet described lysosomal storage disease

    Characterization of Brain Lysosomal Activities in GBA-Related and Sporadic Parkinson’s Disease and Dementia with Lewy Bodies

    Get PDF
    Mutations in the GBA gene, encoding the lysosomal hydrolase glucocerebrosidase (GCase), are the most common known genetic risk factor for Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). The present study aims to gain more insight into changes in lysosomal activity in different brain regions of sporadic PD and DLB patients, screened for GBA variants. Enzymatic activities of GCase, ÎČ-hexosaminidase, and cathepsin D were measured in the frontal cortex, putamen, and substantia nigra (SN) of a cohort of patients with advanced PD and DLB as well as age-matched non-demented controls (n = 15/group) using fluorometric assays. Decreased activity of GCase (− 21%) and of cathepsin D (− 15%) was found in the SN and frontal cortex of patients with PD and DLB compared to controls, respectively. Population stratification was applied based on GBA genotype, showing substantially lower GCase activity (~ − 40%) in GBA variant carriers in all regions. GCase activity was further significantly decreased in the SN of PD and DLB patients without GBA variants in comparison to controls without GBA variants. Our results show decreased GCase activity in brains of PD and DLB patients with and without GBA variants, most pronounced in the SN. The results of our study confirm findings from previous studies, suggesting a role for GCase in GBA-associated as well as sporadic PD and DLB

    Lysosomal Ceramide Metabolism Disorders: Implications in Parkinson’s Disease

    No full text
    Ceramides are a family of bioactive lipids belonging to the class of sphingolipids. Sphingolipidoses are a group of inherited genetic diseases characterized by the unmetabolized sphingolipids and the consequent reduction of ceramide pool in lysosomes. Sphingolipidoses include several disorders as Sandhoff disease, Fabry disease, Gaucher disease, metachromatic leukodystrophy, Krabbe disease, Niemann Pick disease, Farber disease, and GM2 gangliosidosis. In sphingolipidosis, lysosomal lipid storage occurs in both the central nervous system and visceral tissues, and central nervous system pathology is a common hallmark for all of them. Parkinson’s disease, the most common neurodegenerative movement disorder, is characterized by the accumulation and aggregation of misfolded α-synuclein that seem associated to some lysosomal disorders, in particular Gaucher disease. This review provides evidence into the role of ceramide metabolism in the pathophysiology of lysosomes, highlighting the more recent findings on its involvement in Parkinson’s disease

    Are We Ready for Detecting α-Synuclein Prone to Aggregation in Patients? The Case of “Protein-Misfolding Cyclic Amplification” and “Real-Time Quaking-Induced Conversion” as Diagnostic Tools

    Get PDF
    The accumulation and deposition of α-synuclein aggregates in brain tissue is the main event in the pathogenesis of different neurodegenerative disorders grouped under the term of synucleinopathies. They include Parkinson's disease, dementia with Lewy bodies and multiple system atrophy. To date, the diagnosis of any of these disorders mainly relies on the recognition of clinical symptoms, when the neurodegeneration is already in an advanced phase. In the last years, several efforts have been carried out to develop new diagnostic tools for early diagnosis of synucleinopathies, with special interest to Parkinson's disease. The Protein-Misfolding Cyclic Amplification (PMCA) and the Real-Time Quaking-Induced Conversion (RT-QuIC) are ultrasensitive protein amplification assays for the detection of misfolded protein aggregates. Starting from the successful application in the diagnosis of human prion diseases, these techniques were recently tested for the detection of misfolded α-synuclein in brain homogenates and cerebrospinal fluid samples of patients affected by synucleinopathies. So far, only a few studies on a limited number of samples have been performed to test PMCA and RT-QuIC diagnostic reliability. Neverthless, these assays have shown very high sensitivity and specificity in detecting synucleinopathies even at the pre-clinical stage. Despite the application of PMCA and RT-QuIC for α-synuclein detection in biological fluids is very recent, these techniques seem to have the potential for identifying subjects that will be likely to develop synucleinopathies

    Cerebrospinal fluid biomarkers for the diagnosis and prognosis of Parkinson's disease:protocol for a systematic review and individual participant data meta-analysis

    No full text
    INTRODUCTION: Idiopathic Parkinson's disease (PD) is a progressive neurodegenerative disorder related to α-synuclein misfolding and aggregation. For this reason, it belongs to the family of 'synucleinopathies', which also includes some other neurological diseases. Although imaging and ancillary investigations may be helpful in the diagnostic workup, the diagnosis of PD mostly relies on the clinician's expertise. Furthermore, there is a need today for markers that can track the disease progression in PD that might improve the evaluation of novel disease-modifying therapies. The cerebrospinal fluid (CSF) has been widely investigated with the purpose of finding useful diagnostic and prognostic biomarkers for PD.METHODS AND ANALYSIS: This systematic review protocol has been developed according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses Protocol 2015 statement and was registered on the PROSPERO international prospective register of systematic reviews. An international collaboration will be established. We will search the Cochrane Library, Web of Science, Medline and Embase from inception, using appropriate search strategies. Individual participant data from all included studies will be merged into a single database. We will include any study assessing the diagnostic and prognostic role of CSF biomarkers in PD. To evaluate the risk of bias and applicability of primary diagnostic accuracy studies, we will use Quality Assessment of Diagnostic Accuracy Studies-2 and Quality in Prognostic Studies. We will use standard meta-analytic procedures. We will first explore the utility of each CSF biomarker in turn. For each biomarker, we will assess its diagnostic and prognostic utility by means of receiver operating characteristic analysis and regression models. We will then move towards a multivariate approach considering different panels of biomarkers.ETHICS AND DISSEMINATION: Our study will not include confidential data, and no intervention will be involved, so ethical approval is not required. The results of the study will be reported in international peer-reviewed journals

    Lysosomal Dysfunction and alpha-Synuclein Aggregation in Parkinson's Disease: Diagnostic Links

    No full text
    Lysosomal impairment is increasingly recognized as a central event in the pathophysiology of PD. Genetic associations between lysosomal storage disorders, including Gaucher disease and PD, highlight common risk factors and pathological mechanisms. Because the autophagy–lysosomal system is involved in the intralysosomal hydrolysis of dysfunctional proteins, lysosomal impairment may contribute to α‐synuclein aggregation in PD. The degradation of α‐synuclein is a complex process involving different proteolytic mechanisms depending on protein burden, folding, posttranslational modifications, and yet unknown factors. In this review, evidence for lysosomal dysfunction in PD and its intimate relationship with α‐synuclein aggregation are discussed, after which the question of whether lysosomal proteins may serve as diagnostic biomarkers for PD is addressed. Changes in lysosomal enzymes, such as reduced glucocerebrosidase and cathepsin levels, have been observed in affected brain regions in PD patients. The detection of lysosomal proteins in CSF may provide a read‐out of lysosomal dysfunction in PD and holds promise for the development of diagnostic PD biomarkers. Initial PD biomarker studies demonstrated altered lysosomal enzyme activities in CSF of PD patients when compared with controls. However, CSF lysosomal enzyme activities alone could not discriminate between PD patients and controls. The combination of CSF lysosomal markers with α‐synuclein species and indicators of mitochondrial dysfunction, inflammation, and other pathological proteins in PD may be able to facilitate a more accurate diagnosis of PD. Further CSF biomarker studies are needed to investigate the utility of CSF lysosomal proteins as measures of disease state and disease progression in PD

    CSF and blood biomarkers for Parkinson's disease

    No full text
    In the management of Parkinson's disease, reliable diagnostic and prognostic biomarkers are urgently needed. The diagnosis of Parkinson's disease mostly relies on clinical symptoms, which hampers the detection of the earliest phases of the disease—the time at which treatment with forthcoming disease-modifying drugs could have the greatest therapeutic effect. Reliable prognostic markers could help in predicting the response to treatments. Evidence suggests potential diagnostic and prognostic value of CSF and blood biomarkers closely reflecting the pathophysiology of Parkinson's disease, such as α-synuclein species, lysosomal enzymes, markers of amyloid and tau pathology, and neurofilament light chain. A combination of multiple CSF biomarkers has emerged as an accurate diagnostic and prognostic model. With respect to early diagnosis, the measurement of CSF α-synuclein aggregates is providing encouraging preliminary results. Blood α-synuclein species and neurofilament light chain are also under investigation because they would provide a non-invasive tool, both for early and differential diagnosis of Parkinson's disease versus atypical parkinsonian disorders, and for disease monitoring. In view of adopting CSF and blood biomarkers for improving Parkinson's disease diagnostic and prognostic accuracy, further validation in large independent cohorts is needed

    Endo-lysosomal proteins and ubiquitin CSF concentrations in Alzheimer's and Parkinson's disease

    Get PDF
    Background: Increasing evidence implicates dysfunctional proteostasis and the involvement of the autophagic and endo-lysosomal system and the ubiquitin-proteasome system in neurodegenerative diseases. In Alzheimer's disease (AD), there is an accumulation of autophagic vacuoles within the neurons. In Parkinson's disease (PD), susceptibility has been linked to genes encoding proteins involved in autophagy and lysosomal function, as well as mutations causing lysosomal disorders. Furthermore, both diseases are characterized by the accumulation of protein aggregates. Methods: Proteins associated with endocytosis, lysosomal function, and the ubiquitin-proteasome system were identified in the cerebrospinal fluid (CSF) and targeted by combining solid-phase extraction and parallel reaction monitoring mass spectrometry. In total, 50 peptides from 18 proteins were quantified in three cross-sectional cohorts including AD (N = 61), PD (N = 21), prodromal AD (N = 10), stable mild cognitive impairment (N = 15), and controls (N = 68). Results: A pilot study, including subjects selected based on their AD CSF core biomarker concentrations, showed increased concentrations of several targeted proteins in subjects with core biomarker levels indicating AD pathology compared to controls. Next, in a clinically characterized cohort, lower concentrations in CSF of proteins in PD were found compared to subjects with prodromal AD. Further investigation in an additional clinical study again revealed lower concentrations in CSF of proteins in PD compared to controls and AD. Conclusion: In summary, significantly different peptide CSF concentrations were identified from proteins AP2B1, C9, CTSB, CTSF, GM2A, LAMP1, LAMP2, TCN2, and ubiquitin. Proteins found to have altered concentrations in more than one study were AP2B1, CTSB, CTSF, GM2A, LAMP2, and ubiquitin. Interestingly, given the genetic implication of lysosomal function in PD, we did identify the CSF concentrations of CTSB, CTSF, GM2A, and LAMP2 to be altered. However, we also found differences in proteins associated with endocytosis (AP2B1) and the ubiquitin-proteasome system (ubiquitin). No difference in any peptide CSF concentration was found in clinically characterized subjects with AD compared to controls. In conclusion, CSF analyses of subjects with PD suggest a general lysosomal dysfunction, which resonates well with recent genetic findings, while such changes are minor or absent in AD
    corecore