112 research outputs found

    Effects of postharvest light spectra on quality and health-related parameters in green Asparagus officinalis L

    Get PDF
    The monitoring of quality parameters in horticultural crops under artificial light during postharvest storage is important for controlling the shelf-life of the crops. In this work, white light, red light, blue light and dark conditions were used at various durations to evaluate the effects of different spectral properties of light on parameters related to physiological and biochemical processes in green asparagus, and on compounds related to human health. For this aim, the level of glucose, fructose and sucrose, as well as that of vitamin C and the levels of lignin, chlorophyll a and b, carotenoids and anthocyanins, were determined in apical and basal segments of the edible portion of green asparagus spears before and after light treatments. A dark control was stored at 4 C. The irradiance levels of the light treatments were 100, 117 and 116 mmol m2 s1, respectively for white, blue and red light. Before treatments, in the apical segments, the content of analysed components were higher than in the basal segments, except for soluble sugars and starch, of which the basal segment exhibited higher levels; these results exhibited different nutritional value of the two segments. After the light treatments, the analysed quality-related parameters were differently influenced in the apical and basal segments during postharvest storage. The increase in dry matter content in the apical segment after both white light and red light treatments was most likely attributable to the presence of physiological postharvest activity, rather than to increased transpiration. The results indicated that light with different spectral properties vs. dark-stored controls had small or no effects on the measured parameters. Both light and dark caused the starch levels to increase in both segments. A decrease in the sugar content in the basal part might be explained by translocation of hexoses from basal towards apical regions of the spear. White light primarily determined the lignin deposition in the apical part most likely due to the synergistic effect of red and blue light on lignin biosynthesis. The vitamin C, chlorophyll a and b and carotenoids decreased in light and dark treatments in both segments. Anthocyanins were induced by light in the basal part only, most so by blue light

    Effects of Darkness and Light Spectra on Nutrients and Pigments in Radish, Soybean, Mung Bean and Pumpkin Sprouts

    Get PDF
    Fresh sprouts are an important source of antioxidant compounds and contain useful phytonutrients in the human diet. Many factors, such as the time of germination and types of light, influence the physiological processes and biosynthetic pathways in sprouts. The effect of red, blue and white light vs. dark conditions on the quality parameters in different sprout species after 5 d of germination was evaluated. Total ascorbate, soluble proteins, sugars, phenolic compounds, and pigments, such as carotenoids, chlorophylls, and anthocyanins, were investigated in radishes, soybeans, mung beans, and pumpkin sprouts. The light treatments increased the contents of vitamin C and the various pigments in all sprouts, conversely, they increased the soluble proteins and sugars, includingd-glucose,d-fructose and sucrose, in soybeans and pumpkins, respectively. The dark treatment prevented the decrease in dry matter due to the lighting, while the red light induced an increase in polyphenols in soybean. These results suggest that the nutritional content of different sprouts grown under different light conditions depend on the dark or specific spectral wavelength used for their growth. The manuscript may increase the knowledge on light use for the industrialized food production aiming at preserving the phytonutrient content of vegetables, increasing the consumer health, or developing tailored diets for specific nutritional needs

    Effect of rare earth elements on growth and antioxidant metabo- lism in Lemna minor L.

    Get PDF
    Lemna minor is frequently used in bioremediation processes to remove nutrients and contaminants from waste water. In this work the response of L. minor to treatments with lanthanum nitrate and with a mix of several light rare earth elements (REE) nitrates was investigated. Preliminary results indicate that L. minor shows an overall good tolerance to the presence of REE in the media. Toxic effects were observed after prolonged exposition to high concentration of REE. An increase in ascorbate and glutathione content as well as in ascorbate peroxidase, dehy- droascorbate reductase and ascorbate free radical (AFR) reductase activity was observed in treated plants

    Increase of fumonisin b2 and ochratoxin a production by black Aspergillus species and oxidative stress in grape berries damaged by powdery mildew.

    Get PDF
    Powdery mildew (PM), caused by the fungus Erysiphe necator, is one of the most widespread fungal disease of grape and may cause extensive openings on the berry surface during the infection. We evaluated the effect of damage caused by PM in grape berries on the growth of and mycotoxin production by Aspergillus and on the oxidative stress in infected berries. Berries of Vitis vinifera L. cv. Negroamaro with sound skin (SS) and those naturally infected by PM were surface sterilized and inoculated with either fumonisin B2 (FB2)-producing strains of Aspergillus niger or ochratoxin A (OTA)-producing strains of Aspergillus carbonarius and incubated at 20 and 30uC. The PM berries were significantly more susceptible to both Aspergillus colonization (5 to 15 times more susceptible) and OTA and FB2 contamination (2 to 9 times more susceptible) than were SS berries. The highest toxin concentration was detected in inoculated PM berries both for OTA (9 ng/g) at 20uC and for FB2 (687 ng/g) at 30uC. In inoculated SS and PM berries, although malondialdehyde and hydrogen peroxide concentrations did not increase, the two black Aspergillus species caused a significant decrease in ascorbate content, thus inducing a pro-oxidant effect. These results indicate that grape berries affected by PM are more susceptible to black Aspergillus growth and to production and/or accumulation of FB2 and OTA. Thus, preventive control of E. necator on grape berries could reduce the mycotoxicological risk from black Aspergillus infection

    Decontamination of Fumonisin B1 in maize grain by Pleurotus eryngii and antioxidant enzymes

    Get PDF
    Fumonisin B1 (FB1) is among the most common mycotoxins found in maize kernels and maize products worldwide. The microbiological process of detoxification and transformation of toxic organic pollutants is a promising method for foodstuffs decontamination. Some basidiomycetes, such as the Pleurotus eryngii species complex, include several important commercial edible varieties that can detoxify polycyclic organic compounds and a range of wastes and pollutants. We investigated the potential role of P. eryngii, one of the most consumed mushrooms, in the decontamination of FB1 in maize. In addition, selected antioxidant enzymes, (soluble peroxidase (POD), catalase (CAT) and ascorbate peroxidase), primarily involved in control of cell hydrogen peroxide levels, and lignin degradation, were analyzed, to evaluate their contributions to the molecular mechanisms of FB1 by P. eryngii. FB1 decontamination by P. eryngii and involvement of CAT and POD enzymes in the control of toxic decontamination levels of H2O2 were demonstrated. A consistent reduction of FB1 was observed at different incubation times. The average decrease levels of FB1, with respect to the control cultures, ranged from 45 to 61% (RSD < 15%). This study is a possible eco-friendly approach to reducing this mycotoxin in the feed supply chains

    Antioxidant response in Chenopodium album elicited by Ascochyta caulina mycoherbicide phytotoxins

    Get PDF
    Antioxidant defence responses were evaluated in Chenopodium album plants treated with a mixture of the phytotoxins ascaulitoxin, 2,4,7-triamino-5-hydroxyoctandioic acid (ascaulitoxin aglycone) and trans-4-aminoproline, produced by the pathogenic fungus Ascochyta caulina, previously proposed as mycoherbicide for this noxious weed. The enzymatic and non-enzymatic effects of these phytotoxins on the ascorbate system and on catalase activity were assessed by evaluating their biological and specific activities through spectrophotometric and electrophoretic analyses. In addition, the oxidative status was monitored through evaluating H2O2 content during the time-course. The mixture of toxins induced high levels of H2O2 accumulation resulting in an oxidative burst in the plant cells. Ascorbate peroxidase and catalase had crucial roles in detoxifying H2O2. The persisting metabolic perturbations, however, led to severe necrosis and death of C. album plants. The induced H2O2 production may be generated by the fungus as part of its necrotrophic nature. This study explains the defence responses in C. album to the mycoherbicide, in particular, the ascorbate systems’ components and H2O2 as an index of oxidative stress

    A polyphasic approach for characterization of a collection of cereal isolates of the Fusarium incarnatum-equiseti species complex

    Get PDF
    "Available online 22 June 2016"DNA-based phylogenetic analyses have resolved the fungal genus Fusarium into multiple species complexes. The F. incarnatum-equiseti species complex (FIESC) includes fusaria associated with several diseases of agriculturally important crops, including cereals. Although members of FIESC are considered to be only moderately aggressive, they are able to produce a diversity of mycotoxins, including trichothecenes, which can accumulate to harmful levels in cereals. High levels of cryptic speciation have been detected within the FIESC. As a result, it is often necessary to use approaches other than morphological characterization to distinguish species. In the current study, we used a polyphasic approach to characterize a collection of 69 FIESC isolates recovered from cereals in Europe, Turkey, and North America. In a species phylogeny inferred from nucleotide sequences from four housekeeping genes, 65 of the isolates were resolved within the Equiseti clade of the FIESC, and four isolates were resolved within the Incarnatum clade. Seven isolates were resolved as a genealogically exclusive lineage, designated here as FIESC 31. Phylogenies based on nucleotide sequences of trichothecene biosynthetic genes and MALDI-TOF MS (Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry) were largely concordant with phylogeny inferred from the housekeeping gene. Finally, Liquid Chromatography (Time-Of-Flight) Mass Spectrometry [LC-(TOF-)MS(/MS)] revealed variability in mycotoxin production profiles among the different phylogenetic species investigated in this study.This work was supported by the EU project EC KBBE-2007-222690-2 MYCORED

    Plant Antioxidants for Food Safety and Quality: Exploring New Trends of Research

    No full text
    Antioxidants are an heterogeneous group of compounds able to counteract cell oxidation by acting as reducing agents, as free radical scavengers, and quenchers of radical species and other pro-oxidants, such as metals [...
    • …
    corecore