328 research outputs found

    Experimental and theoretical investigation of ligand effects on the synthesis of ZnO nanoparticles

    Get PDF
    ZnO nanoparticles with highly controllable particle sizes(less than 10 nm) were synthesized using organic capping ligands in Zn(Ac)2 ethanolic solution. The molecular structure of the ligands was found to have significant influence on the particle size. The multi-functional molecule tris(hydroxymethyl)-aminomethane (THMA) favoured smaller particle distributions compared with ligands possessing long hydrocarbon chains that are more frequently employed. The adsorption of capping ligands on ZnnOn crystal nuclei (where n = 4 or 18 molecular clusters of(0001) ZnO surfaces) was modelled by ab initio methods at the density functional theory (DFT) level. For the molecules examined, chemisorption proceeded via the formation of Zn...O, Zn...N, or Zn...S chemical bonds between the ligands and active Zn2+ sites on ZnO surfaces. The DFT results indicated that THMA binds more strongly to the ZnO surface than other ligands, suggesting that this molecule is very effective at stabilizing ZnO nanoparticle surfaces. This study, therefore, provides new insight into the correlation between the molecular structure of capping ligands and the morphology of metal oxide nanostructures formed in their presence

    Synthesis and characterization of hybrid nanostructures

    Get PDF
    There has been significant interest in the development of multicomponent nanocrystals formed by the assembly of two or more different materials with control over size, shape, composition, and spatial orientation. In particular, the selective growth of metals on the tips of semiconductor nanorods and wires can act to couple the electrical and optical properties of semiconductors with the unique properties of various metals. Here, we outline our progress on the solution-phase synthesis of metal-semiconductor heterojunctions formed by the growth of Au, Pt, or other binary catalytic metal systems on metal (Cd, Pb, Cu)-chalcogenide nanostructures. We show the ability to grow the metal on various shapes (spherical, rods, hexagonal prisms, and wires). Furthermore, manipulating the composition of the metal nanoparticles is also shown, where PtNi and PtCo alloys are our main focus. The magnetic and electrical properties of the developed hybrid nanostructures are shown

    Insulin Glargine in the Intensive Care Unit: A Model-Based Clinical Trial Design

    Get PDF
    Online 4 Oct 2012Introduction: Current succesful AGC (Accurate Glycemic Control) protocols require extra clinical effort and are impractical in less acute wards where patients are still susceptible to stress-induced hyperglycemia. Long-acting insulin Glargine has the potential to be used in a low effort controller. However, potential variability in efficacy and length of action, prevent direct in-hospital use in an AGC framework for less acute wards. Method: Clinically validated virtual trials based on data from stable ICU patients from the SPRINT cohort who would be transferred to such an approach are used to develop a 24-hour AGC protocol robust to different Glargine potencies (1.0x, 1.5x and 2.0x regular insulin) and initial dose sizes (dose = total insulin over prior 12, 18 and 24 hours). Glycemic control in this period is provided only by varying nutritional inputs. Performance is assessed as %BG in the 4.0-8.0mmol/L band and safety by %BG<4.0mmol/L. Results: The final protocol consisted of Glargine bolus size equal to insulin over the previous 18 hours. Compared to SPRINT there was a 6.9% - 9.5% absolute decrease in mild hypoglycemia (%BG<4.0mmol/L) and up to a 6.2% increase in %BG between 4.0 and 8.0mmol/L. When the efficacy is known (1.5x assumed) there were reductions of: 27% BG measurements, 59% insulin boluses, 67% nutrition changes, and 6.3% absolute in mild hypoglycemia. Conclusion: A robust 24-48 clinical trial has been designed to safely investigate the efficacy and kinetics of Glargine as a first step towards developing a Glargine-based protocol for less acute wards. Ensuring robustness to variability in Glargine efficacy significantly affects the performance and safety that can be obtained

    Visualization and analysis of molecular scanner peptide mass spectra

    Full text link
    AbstractThe molecular scanner combines protein separation using gel electrophoresis with peptide mass fingerprinting (PMF) techniques to identify proteins in a highly automated manner. Proteins separated in a 2-dimensional polyacrylamide gel (2-D PAGE) are digested in parallel and transferred onto a membrane keeping their relative positions. The membrane is then sprayed with a matrix and inserted into a matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometer, which measures a peptide mass fingerprint at each site on the scanned grid. First, visualization of PMF data allows surveying all fingerprints at once and provides very useful information on the presence of chemical noise. Chemical noise is shown to be a potential source for erroneous identifications and is therefore purged from the mass fingerprints. Then, the correlation between neighboring spectra is used to recalibrate the peptide masses. Finally, a method that clusters peptide masses according to the similarity of the spatial distributions of their signal intensities is presented. This method allows discarding many of the false positives that usually go along with PMF identifications and allows identifying many weakly expressed proteins present in the gel
    corecore