59 research outputs found

    SIRT3 and cancer: Tumor promoter or suppressor?

    Get PDF
    AbstractSirtuins (SIRT1–7), the mammalian homologues of the Sir2 gene in yeast, have emerging roles in age-related diseases, such as cardiac hypertrophy, diabetes, obesity, and cancer. However, the role of several sirtuin family members, including SIRT1 and SIRT3, in cancer has been controversial. The aim of this review is to explore and discuss the seemingly dichotomous role of SIRT3 in cancer biology with particular emphasis on its potential role as a tumor promoter and tumor suppressor. This review will also discuss the potential role of SIRT3 as a novel therapeutic target to treat cancer

    Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC 1

    Get PDF
    Nisin, a bacteriocin and commonly used food preservative, may serve as a novel potential therapeutic for treating head and neck squamous cell carcinoma ( HNSCC ), as it induces preferential apoptosis, cell cycle arrest, and reduces cell proliferation in HNSCC cells, compared with primary keratinocytes. Nisin also reduces HNSCC tumorigenesis in vivo. Mechanistically, nisin exerts these effects on HNSCC , in part, through CHAC 1, a proapoptotic cation transport regulator, and through a concomitant CHAC 1‐independent influx of extracellular calcium. In addition, although CHAC 1 is known as an apoptotic mediator, its effects on cancer cell apoptosis have not been examined. Our studies are the first to report CHAC 1's new role in promoting cancer cell apoptosis under nisin treatment. These data support the concept that nisin decreases HNSCC tumorigenesis in vitro and in vivo by inducing increased cell apoptosis and decreased cell proliferation; effects that are mediated by activation of CHAC 1, increased calcium influxes, and induction of cell cycle arrest. These findings support the use of nisin as a potentially novel therapeutic for HNSCC , and as nisin is safe for human consumption and currently used in food preservation, its translation into a clinical setting may be facilitated. Nisin decreases HNSCC tumorigenesis in vitro and in vivo by inducing increased cell apoptosis and decreased cell proliferation; effects that are mediated by activation of CHAC1, increased calcium influxes, and induction of cell cycle arrest. These findings support the use of nisin as a potentially novel therapeutic for HNSCC , and as nisin is safe for human consumption and currently used in food preservation, its translation into a clinical setting may be facilitated.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94527/1/cam435.pd

    Apaf-1 overexpression partially overcomes apoptotic resistance in a cisplatin-selected HeLa cell line

    Get PDF
    AbstractInhibition of caspase-3-mediated apoptosis has been hypothesized to be associated with chemoresistance. Investigations of apoptosis revealed that cytosolic cytochrome c is associated with a complex of apoptotic protease activating factor-1 (Apaf-1), an adapter molecule, and caspase-9 to activate caspase-3. However, whether these apoptotic molecules are involved in acquired cisplatin resistance is not understood. The present work shows reduced activation of caspase-3 and apoptosis in a cisplatin-selected HeLa cell line. Ac-DEVD-CHO, a caspase-3 inhibitor, inhibited cisplatin-induced apoptosis about 60–70% in both cell lines. Ac-LEHD-CHO, a caspase-9 inhibitor or Ac-IETD-CHO, a caspase-8 inhibitor, inhibited cisplatin-induced caspase-3 activation and apoptosis similarly in both cell lines. In addition, cisplatin induced the activation of caspase-9, the upstream activator of caspase-3, in a dose-dependent manner, and the activation of caspase-9 was less induced in resistant cells. The accumulation of cytosolic cytochrome c, an activator of caspase-9, and the induction of the mitochondrial membrane-associated voltage-dependent anion channel were also reduced in cisplatin-resistant cells. However, the concentration of Bcl-2 family proteins in cisplatin-resistant cells was normal. The concentration of Apaf-1 was unaltered in both cell lines. Increasing the cellular concentration of Apaf-1 through the transient expression of the gene increased the induction of apoptosis in resistant cells, associated with enhanced activation of caspase-9, caspase-3 and DNA fragmentation factor. Regression analysis reveals that the modification factor, the ratio of the slope in the linear range of the dose–response curve with Apaf-1 to the slope without Apaf-1, is 1.5 and 4.75 in the HeLa and cisplatin-resistant HeLa cells, respectively. These results indicate that apoptosis and caspases are less induced in cisplatin-selected HeLa cells. They also suggest that ectopic overexpression of Apaf-1 may partially reverse the acquired cisplatin resistance

    Treponema denticola increases MMP‐2 expression and activation in the periodontium via reversible DNA and histone modifications

    Full text link
    Host‐derived matrix metalloproteinases (MMPs) and bacterial proteases mediate destruction of extracellular matrices and supporting alveolar bone in periodontitis. The Treponema denticola dentilisin protease induces MMP‐2 expression and activation in periodontal ligament (PDL) cells, and dentilisin‐mediated activation of pro‐MMP‐2 is required for cellular fibronectin degradation. Here, we report that T. denticola regulates MMP‐2 expression through epigenetic modifications in the periodontium. PDL cells were treated with epigenetic enzyme inhibitors before or after T. denticola challenge. Fibronectin fragmentation, MMP‐2 expression, and activation were assessed by immunoblot, zymography, and qRT‐PCR, respectively. Chromatin modification enzyme expression in T. denticola‐challenged PDL cells and periodontal tissues were evaluated using gene arrays. Several classes of epigenetic enzymes showed significant alterations in transcription in diseased tissue and T. denticola‐challenged PDL cells. T. denticola‐mediated MMP‐2 expression and activation were significantly reduced in PDL cells treated with inhibitors of aurora kinases and histone deacetylases. In contrast, DNA methyltransferase inhibitors had little effect, and inhibitors of histone acetyltransferases, methyltransferases, and demethylases exacerbated T. denticola‐mediated MMP‐2 expression and activation. Chronic epigenetic changes in periodontal tissues mediated by T. denticola or other oral microbes may contribute to the limited success of conventional treatment of chronic periodontitis and may be amenable to therapeutic reversal.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142926/1/cmi12815.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142926/2/cmi12815_am.pd

    Parathyroid Hormone Mediates Hematopoietic Cell Expansion through Interleukin-6

    Get PDF
    Parathyroid hormone (PTH) stimulates hematopoietic cells through mechanisms of action that remain elusive. Interleukin-6 (IL-6) is upregulated by PTH and stimulates hematopoiesis. The purpose of this investigation was to identify actions of PTH and IL-6 in hematopoietic cell expansion. Bone marrow cultures from C57B6 mice were treated with fms-like tyrosine kinase-3 ligand (Flt-3L), PTH, Flt-3L plus PTH, or vehicle control. Flt-3L alone increased adherent and non-adherent cells. PTH did not directly impact hematopoietic or osteoclastic cells but acted in concert with Flt-3L to further increase cell numbers. Flt-3L alone stimulated proliferation, while PTH combined with Flt-3L decreased apoptosis. Flt-3L increased blasts early in culture, and later increased CD45+ and CD11b+ cells. In parallel experiments, IL-6 acted additively with Flt-3L to increase cell numbers and IL-6-deficient bone marrow cultures (compared to wildtype controls) but failed to amplify in response to Flt-3L and PTH, suggesting that IL-6 mediated the PTH effect. In vivo, PTH increased Lin- Sca-1+c-Kit+ (LSK) hematopoietic progenitor cells after PTH treatment in wildtype mice, but failed to increase LSKs in IL-6-deficient mice. In conclusion, PTH acts with Flt-3L to maintain hematopoietic cells by limiting apoptosis. IL-6 is a critical mediator of bone marrow cell expansion and is responsible for PTH actions in hematopoietic cell expansion

    The CS1 segment of fibronectin is involved in human OSCC pathogenesis by mediating OSCC cell spreading, migration, and invasion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The alternatively spliced V region or type III connecting segment III (IIICS) of fibronectin is important in early development, wound healing, and tumorigenesis, however, its role in oral cancer has not been fully investigated. Thus, we investigated the role of CS-1, a key site within the CSIII region of fibronectin, in human oral squamous cell carcinoma (OSCC).</p> <p>Methods</p> <p>To determine the expression of CS-1 in human normal and oral SCC tissue specimens immunohistochemical analyses were performed. The expression of CS1 was then associated with clinicopathological factors. To investigate the role of CS-1 in regulating OSCC cell spreading, migration and invasion, OSCC cells were assayed for spreading and migration in the presence of a CS-1 peptide or a CS-1 blocking peptide, and for invasion using Matrigel supplemented with these peptides. In addition, integrin α4siRNA or a focal adhesion kinase (FAK) anti-sense oligonucleotide was transfected into OSCC cells to examine the mechanistic role of integrin α4 or FAK in CS1-mediated cell spreading and migration, respectively.</p> <p>Results</p> <p>CS-1 expression levels were significantly higher in OSCC tissues compared to normal tissues (p < 0.05). Also, although, high levels of CS-1 expression were present in all OSCC tissue samples, low-grade tumors stained more intensely than high grade tumors. OSCC cell lines also expressed higher levels of CS-1 protein compared to normal human primary oral keratinocytes. There was no significant difference in total fibronectin expression between normal and OSCC tissues and cells. Inclusion of CS-1 in the in vitro assays enhanced OSCC cell spreading, migration and invasion, whereas the CS1 blocking peptide inhibited these processes. Suppression of integrin α4 significantly inhibited the CS1-mediated cell spreading. Furthermore, this migration was mediated by focal adhesion kinase (FAK), since FAK suppression significantly blocked the CS1-induced cell migration.</p> <p>Conclusion</p> <p>These data indicate that the CS-1 site of fibronectin is involved in oral cancer pathogenesis and in regulating OSCC cell spreading, migration and invasion.</p
    • 

    corecore