5,779 research outputs found

    Two unlinked double-strand breaks can induce reciprocal exchanges in plant genomes via homologous recombination and non-homologous end-joining

    Get PDF
    Using the rare-cutting endonuclease I-SceI we were able to demonstrate before that the repair of a single double-strand break (DSB) in a plant genome can be mutagenic due to insertions and deletions. However, during replication or due to irradiation several breaks might be induced simultaneously. To analyze the mutagenic potential of such a situation we established an experimental system in tobacco harboring two unlinked transgenes, each carrying an I-SceI site. After transient expression of I-SceI a kanamycin-resistance marker could be restored by joining two previously unlinked broken ends, either by homologous recombination (HR) or by nonhomologous end joining (NHEJ). Indeed, we were able to recover HR and NHEJ events with similar frequencies. Despite the fact that no selection was applied for joining the two other ends, the respective linkage could be detected in most cases tested, demonstrating that the respective exchanges were reciprocal. The frequencies obtained indicate that DSB-induced translocation is up to two orders of magnitude more frequent in somatic cells than ectopic gene conversion. Thus, DSB-induced reciprocal exchanges might play a significant role in plant genome evolution. The technique applied in this study may also be useful for the controlled exchange of unlinked sequences in plant genomes

    Effects of nanosecond pulsed electric field exposure on Arabidopsis thaliana

    Get PDF

    ELM triggering conditions for the integrated modeling of H-mode plasmas

    Full text link
    Recent advances in the integrated modeling of ELMy H-mode plasmas are presented. A model for the H-mode pedestal and for the triggering of ELMs predicts the height, width, and shape of the H-mode pedestal and the frequency and width of ELMs. Formation of the pedestal and the L-H transition is the direct result of ExB flow shear suppression of anomalous transport. The periodic ELM crashes are triggered by either the ballooning or peeling MHD instabilities. The BALOO, DCON, and ELITE ideal MHD stability codes are used to derive a new parametric expression for the peeling-ballooning threshold. The new dependence for the peeling-ballooning threshold is implemented in the ASTRA transport code. Results of integrated modeling of DIII-D like discharges are presented and compared with experimental observations. The results from the ideal MHD stability codes are compared with results from the resistive MHD stability code NIMROD.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    Optimization strategies for fast detection of positive selection on phylogenetic trees.

    Get PDF
    MOTIVATION: The detection of positive selection is widely used to study gene and genome evolution, but its application remains limited by the high computational cost of existing implementations. We present a series of computational optimizations for more efficient estimation of the likelihood function on large-scale phylogenetic problems. We illustrate our approach using the branch-site model of codon evolution. RESULTS: We introduce novel optimization techniques that substantially outperform both CodeML from the PAML package and our previously optimized sequential version SlimCodeML. These techniques can also be applied to other likelihood-based phylogeny software. Our implementation scales well for large numbers of codons and/or species. It can therefore analyse substantially larger datasets than CodeML. We evaluated FastCodeML on different platforms and measured average sequential speedups of FastCodeML (single-threaded) versus CodeML of up to 5.8, average speedups of FastCodeML (multi-threaded) versus CodeML on a single node (shared memory) of up to 36.9 for 12 CPU cores, and average speedups of the distributed FastCodeML versus CodeML of up to 170.9 on eight nodes (96 CPU cores in total).Availability and implementation: ftp://ftp.vital-it.ch/tools/FastCodeML/. CONTACT: [email protected] or [email protected]

    Adenosine metabolized from extracellular ATP ameliorates organ injury by triggering A2BR signaling

    Get PDF
    BACKGROUND: Trauma and a subsequent hemorrhagic shock (T/HS) result in insufficient oxygen delivery to tissues and multiple organ failure. Extracellular adenosine, which is a product of the extracellular degradation of adenosine 5' triphosphate (ATP) by the membrane-embedded enzymes CD39 and CD73, is organ protective, as it participates in signaling pathways, which promote cell survival and suppress inflammation through adenosine receptors including the A2BR. The aim of this study was to evaluate the role of CD39 and CD73 delivering adenosine to A2BRs in regulating the host's response to T/HS. METHODS: T/HS shock was induced by blood withdrawal from the femoral artery in wild-type, global knockout (CD39, CD73, A2BR) and conditional knockout (intestinal epithelial cell-specific deficient VillinCre-A2BRfl/fl) mice. At 3 three hours after resuscitation, blood and tissue samples were collected to analyze organ injury. RESULTS: T/HS upregulated the expression of CD39, CD73, and the A2BR in organs. ATP and adenosine levels increased after T/HS in bronchoalveolar lavage fluid. CD39, CD73, and A2BR mimics/agonists alleviated lung and liver injury. Antagonists or the CD39, CD73, and A2BR knockout (KO) exacerbated lung injury, inflammatory cytokines, and chemokines as well as macrophage and neutrophil infiltration and accumulation in the lung. Agonists reduced the levels of the liver enzymes aspartate transferase and alanine transaminase in the blood, whereas antagonist administration or CD39, CD73, and A2BR KO enhanced enzyme levels. In addition, intestinal epithelial cell-specific deficient VillinCre-A2BRfl/fl mice showed increased intestinal injury compared to their wild-type VillinCre controls. CONCLUSION: In conclusion, the CD39-CD73-A2BR axis protects against T/HS-induced multiple organ failure

    Adenosine Metabolized From Extracellular ATP Ameliorates Organ Injury by Triggering A2BR Signaling

    Get PDF
    BACKGROUND: Trauma and a subsequent hemorrhagic shock (T/HS) result in insufficient oxygen delivery to tissues and multiple organ failure. Extracellular adenosine, which is a product of the extracellular degradation of adenosine 5\u27 triphosphate (ATP) by the membrane-embedded enzymes CD39 and CD73, is organ protective, as it participates in signaling pathways, which promote cell survival and suppress inflammation through adenosine receptors including the A METHODS: T/HS shock was induced by blood withdrawal from the femoral artery in wild-type, global knockout (CD39, CD73, A RESULTS: T/HS upregulated the expression of CD39, CD73, and the A CONCLUSION: In conclusion, the CD39-CD73-
    corecore