746 research outputs found

    L∞-norm and energy quantization for the planar Lane–Emden problem with large exponent

    Get PDF
    For any smooth bounded domain (Formula presented.), we consider positive solutions to (Formula presented.)which satisfy the uniform energy bound (Formula presented.)for (Formula presented.). We prove convergence to (Formula presented.) as (Formula presented.) of the (Formula presented.)-norm of any solution. We further deduce quantization of the energy to multiples of (Formula presented.), thus completing the analysis performed in De Marchis et al. (J Fixed Point Theory Appl 19:889–916, 2017)

    Pigment epithelium-derived factor (PEDF) attenuated capsaicin-induced neurotrophic keratouveitis

    Get PDF
    PURPOSE. To reveal the influence of retrobulbar capsaicin treatment on rats' eyes and to test the protective effects of PEDF, a known neurotrophic and antiangiogenic substance, against neurotrophic keratouveitis. METHODS. A single retrobulbar injection of capsaicin (50 mg/kg) was performed in young rats, and the effect of subsequent retrobulbar injections of PEDF 3.2 or 6.4 mu g was recorded. Tear fluid alterations were evaluated with the Schirmer test and corneal alterations with slit lamp biomicroscopy. Histopathologic alterations were studied with light and electron microscopy. The number of leukocytes (myeloid cells) in the anterior and posterior chambers, peripheral retina, and vitreous were quantitatively evaluated. RESULTS. Reduced tear secretion was found in capsaicin-treated rats compared with the control, but this effect was significantly attenuated by PEDF. Corneal ulceration developed and was followed by scar formation and neovascularization in the capsaicin-treated, and it was also significantly attenuated by PEDF treatment. Leukocyte infiltration of the anterior and posterior chambers, as well as the peripheral retina and vitreous, was also observed in capsaicin-treated eyes and was significantly reduced by PEDF treatment. The protective effects of PEDF were dose dependent for each parameter, even if the treatment was initiated at day 14 after the challenge. CONCLUSIONS. PEDF accelerated the recovery of tear secretion and also prevented capsaicin-induced neurotrophic keratouveitis and peripheral vitreoretinal inflammation. These effects of PEDF, described herein for the first time, may have a clinical application in inflammatory and neovascular diseases of the eye. (Invest Ophthalmol Vis Sci. 2009;50:5173-5180) DOI:10.1167/iovs.08-185

    Wnt3a neutralization enhances T-cell responses through indirect mechanisms and restrains tumor growth

    Get PDF
    The Wnt/beta-catenin pathway regulates T-cell functions, including the repression of effector functions to the advantage of memory development via Tcf1. In a companion study, we demonstrate that, in human cancers, Wnt3a/beta-catenin signaling maintains tumor-infiltrating T cells in a partially exhausted status. Here, we have investigated the effects of Wnt3a neutralization in vivo in a mouse tumor model. Abundant Wnt3a was released, mostly by stromal cells, in the tumor microenvironment. We tested whether Wnt3a neutralization in vivo could rescue the effector capacity of tumor-infiltrating T cells, by administering an antibody to Wnt3a to tumor-bearing mice. This therapy restrained tumor growth and favored the expansion of tumor antigen-specific CD8(+) effector memory T cells with increased expression of Tbet and IFN gamma and reduced expression of Tcf1. However, the effect was not attributable to the interruption of T-cell-intrinsic beta-catenin signaling, because Wnt3a/beta-catenin activation correlated with enhanced, not reduced, T-cell effector functions both ex vivo and in vitro. Adoptively transferred CD8(+) T cells, not directly exposed to the anti-Wnt3a antibody but infiltrating previously Wnt3a-neutralized tumors, also showed improved functions. The rescue of T-cell response was thus secondary to T-cell-extrinsic changes that likely involved dendritic cells. Indeed, tumor-derived Wnt3a strongly suppressed dendritic cell maturation in vitro, and anti-Wnt3a treatment rescued dendritic cell activities in vivo. Our results clarify the function of the Wnt3a/beta-catenin pathway in antitumor effector T cells and suggest that Wnt3a neutralization might be a promising immunotherapy for rescuing dendritic cell activities. (C) 2018 AACR

    Baricitinib therapy response in rheumatoid arthritis patients associates to STAT1 phosphorylation in monocytes

    Get PDF
    Baricitinib is a Janus kinase (JAK) 1 and 2 inhibitor approved for treating rheumatoid arthritis (RA). The JAK/STAT system is essential in the intracellular signaling of different cytokines and in the activation process of the monocyte lineage. This study verifies the effects of baricitinib on STAT phosphorylation in monocytes of RA patients and evaluates the correlation between STAT phosphorylation and response to therapy. We evaluated the disease activity of patients (DAS28CRP) at baseline (T0) and after 4 and 12 weeks (T1-T3) of treatment with baricitinib, dividing them into responders (n = 7) and non-responders (n = 7) based on the reduction of DAS28CRP between T0 and T1 of at least 1.2 points. Through flow cytometry, STAT1 phosphorylation was analyzed at T0/T1/T3 in monocytes, at basal conditions and after IL2, IFN alpha, and IL6 stimulation. We showed that monocyte frequency decreased from T0 to T1 only in responders. Regarding the phosphorylation of STAT1, we observed a tendency for higher basal pSTAT1 in monocytes of non-responder patients and, after 4 weeks, a significant reduction of cytokine-induced pSTAT1 in monocytes of responders compared with non-responders. The single IFN alpha stimulation only partially recapitulated the differences in STAT1 phosphorylation between the two patient subgroups. Finally, responders showed an increased IFN signature at baseline compared with non-responders. These results may suggest that monocyte frequency and STAT1 phosphorylation in circulating monocytes could represent early markers of response to baricitinib therapy

    Dietary determinants of postprandial blood glucose control in adults with type 1 diabetes on a hybrid closed-loop system

    Get PDF
    Aims/hypothesis: The aim of this work was to assess the relationship between meal nutrients and postprandial blood glucose response (PGR) in individuals with type 1 diabetes on a hybrid closed-loop system (HCLS). Methods: The dietary composition of 1264 meals (398 breakfasts, 441 lunches and 425 dinners) was assessed by 7-day food records completed by 25 individuals with type 1 diabetes on HCLSs (12 men/13 women, mean ± SD age 40 ± 12 years, mean ± SD HbA1c 51 ± 10 mmol/mol [6.9 ± 0.2%]). For each meal, PGR (continuous glucose monitoring metrics, glucose incremental AUCs) and insulin doses (pre-meal boluses, post-meal microboluses automatically delivered by the pump and adjustment boluses) over 6 h were evaluated. Results: Breakfast, lunch and dinner significantly differed with respect to energy and nutrient intake and insulin doses. The blood glucose postprandial profile showed an earlier peak after breakfast and a slow increase until 4 h after lunch and dinner (p < 0.001). Mean ± SD postprandial time in range (TIR) was better at breakfast (79.3 ± 22.2%) than at lunch (71.3 ± 23.9%) or dinner (70.0 ± 25.9%) (p < 0.001). Significant negative predictors of TIR at breakfast were total energy intake, per cent intake of total protein and monounsaturated fatty acids, glycaemic load and absolute amounts of cholesterol, carbohydrates and simple sugars consumed (p < 0.05 for all). No significant predictors were detected for TIR at lunch. For TIR at dinner, a significant positive predictor was the per cent intake of plant proteins, while negative predictors were glycaemic load and intake amounts of simple sugars and carbohydrate (p < 0.05 for all). Conclusions/interpretation: This study shows that nutritional factors other than the amount of carbohydrate significantly influence postprandial blood glucose control. These nutritional determinants vary between breakfast, lunch and dinner, with differing effects on postprandial blood glucose profile and insulin requirements, thus remaining a challenge to HCLSs. Graphical abstract: [Figure not available: see fulltext.]

    Reduction in regulatory T cells in preterm newborns is associated with necrotizing enterocolitis

    Get PDF
    BackgroundDespite multifactorial pathogenesis, dysregulation of inflammatory immune response may play a crucial role in necrotizing enterocolitis (NEC). Regulatory T cells (Tregs) are involved in immune tolerance early in life. We aimed to investigate the predicting role of Tregs in developing NEC in neonates at high risk.MethodsWe studied six newborns with a diagnosis of NEC (cases) in comparison with 52 controls (without NEC). We further classified controls as neonates with feeding intolerance (FI) and neonates without it (FeedTol). The rate of female and male neonates (sex defined as a biological attribute) was similar. We analyzed the blood frequency of Tregs (not overall numbers) at three time points: 0-3 (T0), 7-10 (T1), and 27-30 (T2) days after birth by flow cytometry. Neonates' sex was defined based on the inspection of external genitalia at birth.ResultsWe observed, at T0, a significantly lower frequency of Tregs in NEC cases (p &lt; 0.001) compared with both FI (p &lt; 0.01) and FeedTol controls (p &lt; 0.01). Multivariate analysis reported that the occurrence of NEC was independently influenced by Treg frequency at birth (ss 2.98; p = 0.039).ConclusionTregs frequency and features in the peripheral blood of preterm neonates, early in life, may contribute to identifying neonates at high risk of developing NEC.ImpactRegulatory T cells may play a pivotal role in regulating the immune response in early life. Reduction of Tregs in early life could predispose preterm newborns to necrotizing enterocolitis.Early markers of necrotizing enterocolitis are still lacking. We demonstrated a predicting role of assessment of regulatory T cells in the diagnosis of this gastrointestinal emergency.Early identification of newborns at high risk of necrotizing enterocolitis through measurement of regulatory T cells may guide clinicians in the management of preterm newborns in order to reduce the development of this severe condition

    CD8+ T cells specific for cryptic apoptosis-associated epitopes exacerbate experimental autoimmune encephalomyelitis

    Get PDF
    The autoimmune immunopathology occurring in multiple sclerosis (MS) is sustained by myelin-specific and -nonspecific CD8(+) T cells. We have previously shown that, in MS, activated T cells undergoing apoptosis induce a CD8(+) T cell response directed against antigens that are unveiled during the apoptotic process, namely caspase-cleaved structural proteins such as non-muscle myosin and vimentin. Here, we have explored in vivo the development and the function of the immune responses to cryptic apoptosis-associated epitopes (AEs) in a well-established mouse model of MS, experimental autoimmune encephalomyelitis (EAE), through a combination of immunization approaches, multiparametric flow cytometry, and functional assays. First, we confirmed that this model recapitulated the main findings observed in MS patients, namely that apoptotic T cells and effector/memory AE-specific CD8(+) T cells accumulate in the central nervous system of mice with EAE, positively correlating with disease severity. Interestingly, we found that AE-specific CD8(+) T cells were present also in the lymphoid organs of unprimed mice, proliferated under peptide stimulation in vitro, but failed to respond to peptide immunization in vivo, suggesting a physiological control of this response. However, when mice were immunized with AEs along with EAE induction, AE-specific CD8(+) T cells with an effector/memory phenotype accumulated in the central nervous system, and the disease severity was exacerbated. In conclusion, we demonstrate that AE-specific autoimmunity may contribute to immunopathology in neuroinflammation

    Regulatory T cells with multiple suppressive and potentially pro-tumor activities accumulate in human colorectal cancer

    Get PDF
    Tregs can contribute to tumor progression by suppressing antitumor immunity. Exceptionally, in human colorectal cancer (CRC), Tregs are thought to exert beneficial roles in controlling pro-tumor chronic inflammation. The goal of our study was to characterize CRC-infiltrating Tregs at multiple levels, by phenotypical, molecular and functional evaluation of Tregs from the tumor site, compared to non-tumoral mucosa and peripheral blood of CRC patients. The frequency of Tregs was higher in mucosa than in blood, and further significantly increased in tumor. Ex vivo, those Tregs suppressed the proliferation of tumor-infiltrating CD8(+) and CD4(+) T cells. A differential compartmentalization was detected between Helioshigh and Helios(low) Treg subsets (thymus-derived versus peripherally induced): while Helios(low) Tregs were enriched in both sites, only Helios(high) Tregs accumulated significantly and specifically in tumors, displayed a highly demethylated TSDR region and contained high proportions of cells expressing CD39 and OX40, markers of activation and suppression. Besides the suppression of T cells, Tregs may contribute to CRC progression also through releasing IL-17, or differentiating into Tfr cells that potentially antagonize a protective Tfh response, events that were both detected in tumor-associated Tregs. Overall, our data indicate that Treg accumulation may contribute through multiple mechanisms to CRC establishment and progression

    ISG15 protects human Tregs from interferon alpha-induced contraction in a cell-intrinsic fashion

    Get PDF
    Objectives: Type I interferons (IFNs) inhibit regulatory T-cell (Treg) expansion and activation, making them beneficial in antiviral responses, but detrimental in autoimmune diseases. Herein, we investigate the role of ISG15 in human Tregs in the context of refractoriness to type I IFN stimulation. Methods: ISG15 expression and Treg dynamics were analysed in vitro and ex vivo from patients with chronic hepatitis C, with lupus and ISG15 deficiency. Results: ISG15 is expressed at high levels in human Tregs, renders them refractory to the IFN-STAT1 signal, and protects them from IFN-driven contraction. In vitro, Tregs from healthy controls upregulate ISG15 upon activation to higher levels than conventional CD4 T cells, and ISG15-silenced Tregs are more susceptible to IFNα-induced contraction. In human ISG15 deficiency, patient Tregs display an elevated IFN signature relative to Tregs from healthy control. In vivo, in patients with chronic hepatitis C, 2&nbsp;days after starting pegIFN/ribavirin therapy, a stronger ISG15 inducibility correlates with a milder Treg depletion. Ex vivo, in systemic lupus erythematosus patients, higher levels of ISG15 are associated to reduced STAT1 phosphorylation in response to IFNα, and also to increased frequencies of Tregs, characterising active disease. Conclusion: Our results reveal a Treg-intrinsic role of ISG15 in dictating their refractoriness to the IFN signal, thus preserving the Treg population under inflammatory conditions
    • …
    corecore