317 research outputs found

    Computational analysis to predict functional role of hsa-miR-3065-3p as an antiviral therapeutic agent for treatment of triple infections: HCV, HIV-1, and HBV

    Get PDF
    Background: Triple infection (TI) with HIV-1, HCV, and HBV (TI) is highly prevalent in intravenous drug users (IDUs). These TI patients have a faster progression to AIDS, and even after antiretroviral therapy (ART) the prognosis of their disease is poor. The use of microRNA (miRNA) to silence genes holds potential applications for anti-HCV therapy. Methods: We analyzed the role of human miRNAs (hsa-miRs) in TI by computational analyses for HCV, HIV-1, and HBV showing identity to these three viral genomes. Results: We identified one unique miRNA, hsa-miR-3065-3p, that shares significant mutual identity to these three viral genomes (6183%). In addition, hsa-miR-99, hsa-miR-548, and hsa-miR-122 also showed mutual identity with these three viral genomes, albeit at a lower degree (5288%). Conclusion: Here, we present evidence using essential components of bioinformatics tools, and hypothesize that utility of hsa-miR-3065-3p and perhaps miR-548 would be potential antiviral therapeutic agents in the treatment of TI patients because it shows near perfect alignment in the seed region for all three viruses. We also make an argument that current proposed therapy with hsa-miR-122 may not be the optimal choice for HCV patients since it lacks essential gene alignment and may be harmful for the patients.Keywords: HBV; HCV; HIV-1; homology; identity; inhibition; microRNA-based therapy; RNAi; triple infectio

    Characterizing Protein-Protein Interactions with the Fragment Molecular Orbital Method

    Get PDF
    Proteins are vital components of living systems, serving as building blocks, molecular machines, enzymes, receptors, ion channels, sensors, and transporters. Protein-protein interactions (PPIs) are a key part of their function. There are more than 645,000 reported disease-relevant PPIs in the human interactome, but drugs have been developed for only 2% of these targets. The advances in PPI-focused drug discovery are highly dependent on the availability of structural data and accurate computational tools for analysis of this data. Quantum mechanical approaches are often too expensive computationally, but the fragment molecular orbital (FMO) method offers an excellent solution that combines accuracy, speed and the ability to reveal key interactions that would otherwise be hard to detect. FMO provides essential information for PPI drug discovery, namely, identification of key interactions formed between residues of two proteins, including their strength (in kcal/mol) and their chemical nature (electrostatic or hydrophobic). In this chapter, we have demonstrated how three different FMO-based approaches (pair interaction energy analysis (PIE analysis), subsystem analysis (SA) and analysis of protein residue networks (PRNs)) have been applied to study PPI in three protein-protein complexes

    Culture-Independent Microbiological Analysis of Foley Urinary Catheter Biofilms

    Get PDF
    Background: Prevention of catheter-associated urinary tract infection (CAUTI), a leading cause of nosocomial disease, is complicated by the propensity of bacteria to form biofilms on indwelling medical devices [1,2,3,4,5]. Methodology/Principal Findings: To better understand the microbial diversity of these communities, we report the results of a culture-independent bacterial survey of Foley urinary catheters obtained from patients following total prostatectomy. Two patient subsets were analyzed, based on treatment or no treatment with systemic fluoroquinolone antibiotics during convalescence. Results indicate the presence of diverse polymicrobial assemblages that were most commonly observed in patients who did not receive systemic antibiotics. The communities typically contained both Gram-positive and Gramnegative microorganisms that included multiple potential pathogens. Conclusion/Significance: Prevention and treatment of CAUTI must take into consideration the possible polymicrobial nature of any particular infection

    The nucleotide addition cycle of RNA polymerase is controlled by two molecular hinges in the Bridge Helix domain

    Get PDF
    Abstract Background Cellular RNA polymerases (RNAPs) are complex molecular machines that combine catalysis with concerted conformational changes in the active center. Previous work showed that kinking of a hinge region near the C-terminus of the Bridge Helix (BH-HC) plays a critical role in controlling the catalytic rate. Results Here, new evidence for the existence of an additional hinge region in the amino-terminal portion of the Bridge Helix domain (BH-HN) is presented. The nanomechanical properties of BH-HN emerge as a direct consequence of the highly conserved primary amino acid sequence. Mutations that are predicted to influence its flexibility cause corresponding changes in the rate of the nucleotide addition cycle (NAC). BH-HN displays functional properties that are distinct from BH-HC, suggesting that conformational changes in the Bridge Helix control the NAC via two independent mechanisms. Conclusions The properties of two distinct molecular hinges in the Bridge Helix of RNAP determine the functional contribution of this domain to key stages of the NAC by coordinating conformational changes in surrounding domains.</p

    Evolutionary Convergence and Nitrogen Metabolism in Blattabacterium strain Bge, Primary Endosymbiont of the Cockroach Blattella germanica

    Get PDF
    Bacterial endosymbionts of insects play a central role in upgrading the diet of their hosts. In certain cases, such as aphids and tsetse flies, endosymbionts complement the metabolic capacity of hosts living on nutrient-deficient diets, while the bacteria harbored by omnivorous carpenter ants are involved in nitrogen recycling. In this study, we describe the genome sequence and inferred metabolism of Blattabacterium strain Bge, the primary Flavobacteria endosymbiont of the omnivorous German cockroach Blattella germanica. Through comparative genomics with other insect endosymbionts and free-living Flavobacteria we reveal that Blattabacterium strain Bge shares the same distribution of functional gene categories only with Blochmannia strains, the primary Gamma-Proteobacteria endosymbiont of carpenter ants. This is a remarkable example of evolutionary convergence during the symbiotic process, involving very distant phylogenetic bacterial taxa within hosts feeding on similar diets. Despite this similarity, different nitrogen economy strategies have emerged in each case. Both bacterial endosymbionts code for urease but display different metabolic functions: Blochmannia strains produce ammonia from dietary urea and then use it as a source of nitrogen, whereas Blattabacterium strain Bge codes for the complete urea cycle that, in combination with urease, produces ammonia as an end product. Not only does the cockroach endosymbiont play an essential role in nutrient supply to the host, but also in the catabolic use of amino acids and nitrogen excretion, as strongly suggested by the stoichiometric analysis of the inferred metabolic network. Here, we explain the metabolic reasons underlying the enigmatic return of cockroaches to the ancestral ammonotelic state

    Structure and Behavior of Human α-Thrombin upon Ligand Recognition: Thermodynamic and Molecular Dynamics Studies

    Get PDF
    Thrombin is a serine proteinase that plays a fundamental role in coagulation. In this study, we address the effects of ligand site recognition by alpha-thrombin on conformation and energetics in solution. Active site occupation induces large changes in secondary structure content in thrombin as shown by circular dichroism. Thrombin-D-Phe-Pro-Arg-chloromethyl ketone (PPACK) exhibits enhanced equilibrium and kinetic stability compared to free thrombin, whose difference is rooted in the unfolding step. Small-angle X-ray scattering (SAXS) measurements in solution reveal an overall similarity in the molecular envelope of thrombin and thrombin-PPACK, which differs from the crystal structure of thrombin. Molecular dynamics simulations performed with thrombin lead to different conformations than the one observed in the crystal structure. These data shed light on the diversity of thrombin conformers not previously observed in crystal structures with distinguished catalytic and conformational behaviors, which might have direct implications on novel strategies to design direct thrombin inhibitors
    corecore