18 research outputs found

    Antiplasmodial and leishmanicidal activities of 2-cyano-3-(4-phenylpiperazine-1-carboxamido) quinoxaline 1,4-dioxide derivatives.

    Get PDF
    Malaria and leishmaniasis are two of the World’s most important tropical parasitic diseases. Thirteen new 2-cyano-3-(4-phenylpiperazine-1-carboxamido) quinoxaline 1,4-dioxide derivatives (CPCQs) were synthesized and evaluated for their in vitro antimalarial and antileishmanial activity against erythrocytic forms of Plasmodium falciparum and axenic forms of Leishmania infantum. Their toxicity against VERO cells (normal monkey kidney cells) was also assessed. None of the tested compounds was efficient against Plasmodium, but two of them showed good activity against Leishmania. Toxicity on VERO was correlated with leishmanicidal properties

    New salicylamide and sulfonamide derivatives of quinoxaline 1,4-di-N-oxide with antileishmanial and antimalarial activities

    Get PDF
    Continuing with the efforts to identify new active compounds against malaria and leishmaniasis, fourteen new 3-amino-1,4-di-N-oxide quinoxaline-2-carbonitrile derivatives were synthesized and evaluated for their in vitro antimalarial and antileishmanial activity against Plasmodium falciparum Colombian FCR-3 strain and Leishmania amazonensis strain MHOM/BR/76/LTB-012A. Further computational studies to analyze graphic SAR and ADME properties were undertaken. Results indicate that compounds with one halogenous group substituted in position 6 and 7 provide an efficient approach for further development of antimalarial and antileishmanial agents. In addition, interesting ADME properties were foun

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

    Get PDF
    BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

    Get PDF
    Background A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials

    Primaquine–quinoxaline 1,4‑di‑N‑oxide hybrids with action on the exo‑erythrocytic forms of Plasmodium induce their efect by the production of reactive oxygen species

    Get PDF
    Background: The challenge in anti-malarial chemotherapy is based on the emergence of resistance to drugs and the search for medicines against all stages of the life cycle of Plasmodium spp. as a therapeutic target. Nowadays, many molecules with anti-malarial activity are reported. However, few studies about the cellular and molecular mechanisms to understand their mode of action have been explored. Recently, new primaquine-based hybrids as new molecules with potential multi-acting anti-malarial activity were reported and two hybrids of primaquine linked to quinoxaline 1,4-di-N-oxide (PQ–QdNO) were identifed as the most active against erythrocytic, exoerythrocytic and sporogonic stages. Methods: To further understand the anti-malarial mode of action (MA) of these hybrids, hepg2-CD81 were infected with Plasmodium yoelii 17XNL and treated with PQ–QdNO hybrids during 48 h. After were evaluated the production of ROS, the mitochondrial depolarization, the total glutathione content, the DNA damage and proteins related to oxidative stress and death cell. Results: In a preliminary analysis as tissue schizonticidals, these hybrids showed a mode of action dependent on peroxides production, but independent of the activation of transcription factor p53, mitochondrial depolarization and arrest cell cycle. Conclusions: Primaquine–quinoxaline 1,4-di-N-oxide hybrids exert their antiplasmodial activity in the exoeryth‑ rocytic phase by generating high levels of oxidative stress which promotes the increase of total glutathione levels, through oxidation stress sensor protein DJ-1. In addition, the role of HIF1a in the mode of action of quinoxaline 1,4-diN-oxide is independent of biological activity

    Synthesis, biological evaluation and structure-activity relationships of new quinoxaline derivatives as anti-Plasmodium falciparum agents

    No full text
    We report the synthesis and antimalarial activities of eighteen quinoxaline and quinoxaline 1,4-di-N-oxide derivatives, eight of which are completely novel. Compounds 1a and 2a were the most active against Plasmodium falciparum strains. Structure-activity relationships demonstrated the importance of an enone moiety linked to the quinoxaline ring

    New amide derivatives of quinoxaline 1,4-di-N-oxide with leishmanicidal and antiplasmodial activities

    No full text
    Malaria and leishmaniasis are two of the World’s most important tropical parasitic diseases. Continuing with our efforts to identify new compounds active against malaria and leishmaniasis, twelve new 1,4-di-N-oxide quinoxaline derivatives were synthesized and evaluated for their in vitro antimalarial and antileishmanial activity against Plasmodium falciparum FCR-3 strain, Leishmania infantum and Leishmania amazonensis. Their toxicity against VERO cells (normal monkey kidney cells) was also assessed. The results obtained indicate that a cyclopentyl derivative had the best antiplasmodial activity (2.9 µM), while a cyclohexyl derivative (2.5 µM) showed the best activity against L. amazonensis, and a 3-chloropropyl derivative (0.7 µM) showed the best results against L. infantum. All these compounds also have a Cl substituent in the R7 position

    Antiplasmodial and leishmanicidal activities of 2-cyano-3-(4-phenylpiperazine-1-carboxamido) quinoxaline 1,4-dioxide derivatives.

    No full text
    Malaria and leishmaniasis are two of the World’s most important tropical parasitic diseases. Thirteen new 2-cyano-3-(4-phenylpiperazine-1-carboxamido) quinoxaline 1,4-dioxide derivatives (CPCQs) were synthesized and evaluated for their in vitro antimalarial and antileishmanial activity against erythrocytic forms of Plasmodium falciparum and axenic forms of Leishmania infantum. Their toxicity against VERO cells (normal monkey kidney cells) was also assessed. None of the tested compounds was efficient against Plasmodium, but two of them showed good activity against Leishmania. Toxicity on VERO was correlated with leishmanicidal properties

    New salicylamide and sulfonamide derivatives of quinoxaline 1,4-di-N-oxide with antileishmanial and antimalarial activities

    No full text
    Continuing with the efforts to identify new active compounds against malaria and leishmaniasis, fourteen new 3-amino-1,4-di-N-oxide quinoxaline-2-carbonitrile derivatives were synthesized and evaluated for their in vitro antimalarial and antileishmanial activity against Plasmodium falciparum Colombian FCR-3 strain and Leishmania amazonensis strain MHOM/BR/76/LTB-012A. Further computational studies to analyze graphic SAR and ADME properties were undertaken. Results indicate that compounds with one halogenous group substituted in position 6 and 7 provide an efficient approach for further development of antimalarial and antileishmanial agents. In addition, interesting ADME properties were foun
    corecore