8 research outputs found

    Cortical structural differences following repeated ayahuasca use hold molecular signatures

    Get PDF
    IntroductionSerotonergic psychedelics such as ayahuasca are reported to promote both structural and functional neural plasticity via partial 5-HT2A agonism. However, little is known about how these molecular mechanisms may extend to repeated psychedelic administration in humans, let alone neuroanatomy. While early evidence suggests localised changes to cortical thickness in long-term ayahuasca users, it is unknown how such findings may be reflected by large-scale anatomical brain networks comprising cytoarchitecturally complex regions.MethodsHere, we examined the relationship between cortical gene expression markers of psychedelic action and brain morphometric change following repeated ayahuasca usage, using high-field 7 Tesla neuroimaging data derived from 24 members of an ayahuasca-using church (Santo Daime) and case-matched controls.ResultsUsing a morphometric similarity network (MSN) analysis, repeated ayahuasca use was associated with a spatially distributed cortical patterning of both structural differentiation in sensorimotor areas and de-differentiation in transmodal areas. Cortical MSN remodelling was found to be spatially correlated with dysregulation of 5-HT2A gene expression as well as a broader set of genes encoding target receptors pertinent to ayahuasca’s effects. Furthermore, these associations were similarly interrelated with altered gene expression of specific transcriptional factors and immediate early genes previously identified in preclinical assays as relevant to psychedelic-induced neuroplasticity.ConclusionTaken together, these findings provide preliminary evidence that the molecular mechanisms of psychedelic action may scale up to a macroscale level of brain organisation in vivo. Closer attention to the role of cortical transcriptomics in structural-functional coupling may help account for the behavioural differences observed in experienced psychedelic users

    Altered State of Consciousness and Mental Imagery as a Function of N, N-dimethyltryptamine Concentration in Ritualistic Ayahuasca Users

    No full text
    Consumption of the psychedelic brew ayahuasca is a central ritualistic aspect of the Santo Daime religion. The current observational, baseline controlled study was designed to assess whether members (n = 24) of the Santo Daime church would show enhanced capacity for mental imagery during an ayahuasca experience. In addition, this study assessed whether the effects of ayahuasca on consciousness and mental imagery were related to peak serum concentration of N, N-dimethyltryptamine (DMT), the main psychoactive component. Measures of altered states of consciousness (5-Dimensional Altered States of Consciousness Questionnaire) and ego dissolution (Ego Dissolution Inventory [EDI]) as well as measures of mental imagery (visual perspective shifting, vividness of visual imagery, cognitive flexibility, associative thinking) were taken on two subsequent days on which members of Santo Daime were sober or drank a self-selected volume of ayahuasca. Measures of altered states of consciousness revealed that feelings of oceanic boundlessness, visual restructuralization, and EDI increased most prominently after drinking and shared a positive correlation with peak DMT concentration. Measures of mental imagery did not noticeably differ between the baseline and ayahuasca condition, although subjective ratings of cognitive flexibility were lower under ayahuasca. Two measures related to mental imagery, that is, perspective shifts and cognitive flexibility, were significantly correlated to peak DMT concentrations. Peak concentrations of DMT and other alkaloids did not correlate with ayahuasca dose. These findings confirm previous notions that the primary phenomenological characteristics of ayahuasca are driven by DMT. Compensatory or neuroadaptive effects associated with long-term ayahuasca intake may have mitigated the acute impact of ayahuasca in Santo Daime members on mental imagery

    Dynamic Functional Hyperconnectivity after Psilocybin Intake is Primarily Associated with Oceanic Boundlessness

    No full text
    Background: Psilocybin is a widely studied psychedelic substance that leads to the psychedelic state, a specific altered state of consciousness. To date, the relationship between the psychedelic state's neurobiological and experiential patterns remains undercharacterized because they are often analyzed separately. We investigated the relationship between neurobiological and experiential patterns after psilocybin by focusing on the link between dynamic cerebral connectivity and retrospective questionnaire assessment. Methods: Healthy participants were randomized to receive either psilocybin (n = 22) or placebo (n = 27) and scanned for 6 minutes in an eyes-open resting state during the peak subjective drug effect (102 minutes posttreatment) in ultrahigh field 7T magnetic resonance imaging. The 5-Dimensional Altered States of Consciousness Rating Scale was administered 360 minutes after drug intake. Results: Under psilocybin, there were alterations across all dimensions of the 5-Dimensional Altered States of Consciousness Rating Scale and widespread increases in averaged brain functional connectivity. Time-varying functional connectivity analysis unveiled a recurrent hyperconnected pattern characterized by low blood oxygen level–dependent signal amplitude, suggesting heightened cortical arousal. In terms of neuroexperiential links, canonical correlation analysis showed higher transition probabilities to the hyperconnected pattern with feelings of oceanic boundlessness and secondly with visionary restructuralization. Conclusions: Psilocybin generates profound alterations at both the brain and the experiential levels. We suggest that the brain's tendency to enter a hyperconnected-hyperarousal pattern under psilocybin represents the potential to entertain variant mental associations. These findings illuminate the intricate interplay between brain dynamics and subjective experience under psilocybin, thereby providing insights into the neurophysiology and neuroexperiential qualities of the psychedelic state.</p

    Ritualistic use of ayahuasca enhances a shared functional connectome identity with others

    No full text
    The knowledge that brain functional connectomes are both unique and reliable has enabled behaviourally relevant inferences at a subject level. However, it is unknown whether such “fingerprints” persist under altered states of consciousness. Ayahuasca is a potent serotonergic psychedelic which elicits a widespread dysregulation of functional connectivity. Used communally in religious ceremonies, its shared use may highlight relevant novel interactions between mental state and FC inherency. Using 7T fMRI, we assessed resting-state static and dynamic FCs for 21 Santo Daime members after collective ayahuasca intake in an acute, within-subject study. Here, connectome fingerprinting revealed a shared functional space, accompanied by a spatiotemporal reallocation of keypoint edges. Importantly, we show that interindividual differences in higher-order FCs motifs are relevant to experiential phenotypes, given that they can predict perceptual drug effects. Collectively, our findings offer an example as to how individualised connectivity markers can be used to trace a subject’s functional connectome across altered states of consciousness

    Assessment of the acute effects of 2C-B vs psilocybin on subjective experience, mood and cognition

    No full text
    2,5-dimethoxy-4-bromophenethylamine (2C-B) is a hallucinogenic phenethylamine derived from mescaline. Observational and preclinical data have suggested it to be capable of producing both subjective and emotional effects on par with other classical psychedelics and entactogens. Whereas it is the most prevalently used novel serotonergic hallucinogen to date, it’s acute effects and distinctions from classical progenitors have yet to be characterised in a controlled study. We assessed for the first time the immediate acute subjective, cognitive, and cardiovascular effects of 2C-B (20 mg) in comparison to psilocybin (15mg) and placebo in a within-subjects, double-blind, placebo-controlled study of 22 healthy psychedelic-experienced participants. 2C-B elicited alterations of waking consciousness of a psychedelic nature, with dysphoria, subjective impairment, auditory alterations, and affective elements of ego dissolution largest under psilocybin. Participants demonstrated equivalent psychomotor slowing and spatial memory impairments under either compound compared to placebo, as indexed by the Digit Symbol Substitution Test (DSST), Tower of London (TOL) and Spatial Memory Task (SMT). Neither compound produced empathogenic effects on the Multifaceted Empathy Test (MET). 2C-B induced transient pressor effects to a similar degree as psilocybin. The duration of self-reported effects of 2C-B was shorter than that of psilocybin, largely resolving within 6 hours. Present findings support the categorisation of 2C-B as a subjectively “lighter” psychedelic. Tailored dose-effect studies are needed to discern the pharmacokinetic dependency of 2C-B’s experiential overlaps

    Assessment of the acute effects of 2C-B vs. psilocybin on subjective experience, mood, and cognition

    No full text
    2,5-dimethoxy-4-bromophenethylamine (2C-B) is a hallucinogenic phenethylamine derived from mescaline. Observational and preclinical data have suggested it to be capable of producing both subjective and emotional effects on par with other classical psychedelics and entactogens. Whereas it is the most prevalently used novel serotonergic hallucinogen to date, it's acute effects and distinctions from classical progenitors have yet to be characterized in a controlled study. We assessed for the first time the immediate acute subjective, cognitive, and cardiovascular effects of 2C-B (20 mg) in comparison to psilocybin (15 mg) and placebo in a within-subjects, double-blind, placebo-controlled study of 22 healthy psychedelic-experienced participants. 2C-B elicited alterations of waking consciousness of a psychedelic nature, with dysphoria, subjective impairment, auditory alterations, and affective elements of ego dissolution largest under psilocybin. Participants demonstrated equivalent psychomotor slowing and spatial memory impairments under either compound compared with placebo, as indexed by the Digit Symbol Substitution Test, Tower of London, and Spatial Memory Task. Neither compound produced empathogenic effects on the Multifaceted Empathy Test. 2C-B induced transient pressor effects to a similar degree as psilocybin. The duration of self-reported effects of 2C-B was shorter than that of psilocybin, largely resolving within 6 hours. Present findings support the categorization of 2C-B as a psychedelic of moderate experiential depth at doses given. Tailored dose-effect studies are needed to discern the pharmacokinetic dependency of 2C-B's experiential overlaps

    Metabolomics and integrated network analysis reveal roles of endocannabinoids and large neutral amino acid balance in the ayahuasca experience

    No full text
    There has been a renewed interest in the potential use of psychedelics for the treatment of psychiatric conditions. Nevertheless, little is known about the mechanism of action and molecular pathways influenced by ayahuasca use in humans. Therefore, for the first time, our study aims to investigate the human metabolomics signature after consumption of a psychedelic, ayahuasca, and its connection with both the psychedelic-induced subjective effects and the plasma concentrations of ayahuasca alkaloids. Plasma samples of 23 individuals were collected both before and after ayahuasca consumption. Samples were analysed through targeted metabolomics and further integrated with subjective ratings of the ayahuasca experience (i.e., using the 5-Dimension Altered States of Consciousness Rating Scale [ASC]), and plasma ayahuasca-alkaloids using integrated network analysis. Metabolic pathways enrichment analysis using diffusion algorithms for specific KEGG modules was performed on the metabolic output. Compared to baseline, the consumption of ayahuasca increased N-acyl-ethanolamine endocannabinoids, decreased 2-acyl-glycerol endocannabinoids, and altered several large-neutral amino acids (LNAAs). Integrated network results indicated that most of the LNAAs were inversely associated with 9 out of the 11 subscales of the ASC, except for tryptophan which was positively associated. Several endocannabinoids and hexosylceramides were directly associated with the ayahuasca alkaloids. Enrichment analysis confirmed dysregulation in several pathways involved in neurotransmission such as serotonin and dopamine synthesis. In conclusion, a crosstalk between the circulating LNAAs and the subjective effects is suggested, which is independent of the alkaloid concentrations and provides insights into the specific metabolic fingerprint and mechanism of action underlying ayahuasca experiences

    Metabolomics and integrated network analysis reveal roles of endocannabinoids and large neutral amino acid balance in the ayahuasca experience

    Full text link
    There has been a renewed interest in the potential use of psychedelics for the treatment of psychiatric conditions. Nevertheless, little is known about the mechanism of action and molecular pathways influenced by ayahuasca use in humans. Therefore, for the first time, our study aims to investigate the human metabolomics signature after consumption of a psychedelic, ayahuasca, and its connection with both the psychedelic-induced subjective effects and the plasma concentrations of ayahuasca alkaloids. Plasma samples of 23 individuals were collected both before and after ayahuasca consumption. Samples were analysed through targeted metabolomics and further integrated with subjective ratings of the ayahuasca experience (i.e., using the 5-Dimension Altered States of Consciousness Rating Scale [ASC]), and plasma ayahuasca-alkaloids using integrated network analysis. Metabolic pathways enrichment analysis using diffusion algorithms for specific KEGG modules was performed on the metabolic output. Compared to baseline, the consumption of ayahuasca increased N-acyl-ethanolamine endocannabinoids, decreased 2-acyl-glycerol endocannabinoids, and altered several large-neutral amino acids (LNAAs). Integrated network results indicated that most of the LNAAs were inversely associated with 9 out of the 11 subscales of the ASC, except for tryptophan which was positively associated. Several endocannabinoids and hexosylceramides were directly associated with the ayahuasca alkaloids. Enrichment analysis confirmed dysregulation in several pathways involved in neurotransmission such as serotonin and dopamine synthesis. In conclusion, a crosstalk between the circulating LNAAs and the subjective effects is suggested, which is independent of the alkaloid concentrations and provides insights into the specific metabolic fingerprint and mechanism of action underlying ayahuasca experiences
    corecore