6 research outputs found

    Expression variability of co-regulated genes differentiates Saccharomyces cerevisiae strains

    Get PDF
    Background: Saccharomyces cerevisiae (Baker’s yeast) is found in diverse ecological niches and is characterized by high adaptive potential under challenging environments. In spite of recent advances on the study of yeast genome diversity, little is known about the underlying gene expression plasticity. In order to shed new light onto this biological question, we have compared transcriptome profiles of five environmental isolates, clinical and laboratorial strains at different time points of fermentation in synthetic must medium, during exponential and stationary growth phases. Results: Our data unveiled diversity in both intensity and timing of gene expression. Genes involved in glucose metabolism and in the stress response elicited during fermentation were among the most variable. This gene expression diversity increased at the onset of stationary phase (diauxic shift). Environmental isolates showed lower average transcript abundance of genes involved in the stress response, assimilation of nitrogen and vitamins, and sulphur metabolism, than other strains. Nitrogen metabolism genes showed significant variation in expression among the environmental isolates. Conclusions: Wild type yeast strains respond differentially to the stress imposed by nutrient depletion, ethanol accumulation and cell density increase, during fermentation of glucose in synthetic must medium. Our results support previous data showing that gene expression variability is a source of phenotypic diversity among closely related organisms.Fundação para a Ciência e TecnologiaThe authors wish to thank Adega Cooperativa da Bairrada, Cantanhede, Portugal, for providing the commercial strains

    Neuropeptidomic Components Generated by Proteomic Functions in Secretory Vesicles for Cell–Cell Communication

    Get PDF
    Diverse neuropeptides participate in cell–cell communication to coordinate neuronal and endocrine regulation of physiological processes in health and disease. Neuropeptides are short peptides ranging in length from ~3 to 40 amino acid residues that are involved in biological functions of pain, stress, obesity, hypertension, mental disorders, cancer, and numerous health conditions. The unique neuropeptide sequences define their specific biological actions. Significantly, this review article discusses how the neuropeptide field is at the crest of expanding knowledge gained from mass-spectrometry-based neuropeptidomic studies, combined with proteomic analyses for understanding the biosynthesis of neuropeptidomes. The ongoing expansion in neuropeptide diversity lies in the unbiased and global mass-spectrometry-based approaches for identification and quantitation of peptides. Current mass spectrometry technology allows definition of neuropeptide amino acid sequence structures, profiling of multiple neuropeptides in normal and disease conditions, and quantitative peptide measures in biomarker applications to monitor therapeutic drug efficacies. Complementary proteomic studies of neuropeptide secretory vesicles provide valuable insight into the protein processes utilized for neuropeptide production, storage, and secretion. Furthermore, ongoing research in developing new computational tools will facilitate advancements in mass-spectrometry-based identification of small peptides. Knowledge of the entire repertoire of neuropeptides that regulate physiological systems will provide novel insight into regulatory mechanisms in health, disease, and therapeutics

    Quinacrine and Other Acridines

    No full text

    Risk assessment, disease prevention and personalised treatments in breast cancer: is clinically qualified integrative approach in the horizon?

    No full text
    corecore