231 research outputs found
Benchmarking the Self-Assembly of Surfactin Biosurfactant at the Liquid–Air Interface to those of Synthetic Surfactants
The adsorption of surfactin, a lipopeptide biosurfactant, at the liquid–air interface has been investigated in this work. The maximum adsorption density and the nature and the extent of lateral interaction between the adsorbed surfactin molecules at the interface were estimated from surface tension data using the Frumkin model. The quantitative information obtained using the Frumkin model was also compared to those obtained using the Gibbs equation and the Langmuir–Szyszkowski model. Error analysis showed a better agreement between the experimental and the calculated values using the Frumkin model relative to the other two models. The adsorption of surfactin at the liquid–air interface was also compared to those of synthetic anionic, sodium dodecylbenzenesulphonate (SDBS), and nonionic, octaethylene glycol monotetradecyl ether (C14E8), surfactants. It has been estimated that the area occupied by a surfactin molecule at the interface is about 3- and 2.5-fold higher than those occupied by SDBS and C14E8 molecules, respectively. The interaction between the adsorbed molecules of the anionic biosurfactant (surfactin) was estimated to be attractive, unlike the mild repulsive interaction between the adsorbed SDBS molecules
Parametric Study on Dimensional Control of ZnO Nanowalls and Nanowires by Electrochemical Deposition
A simple electrochemical deposition technique is used to synthesize both two-dimensional (nanowall) and one-dimensional (nanowire) ZnO nanostructures on indium-tin-oxide-coated glass substrates at 70°C. By fine-tuning the deposition conditions, particularly the initial Zn(NO3)2·6H2O electrolyte concentration, the mean ledge thickness of the nanowalls (50–100 nm) and the average diameter of the nanowires (50–120 nm) can be easily varied. The KCl supporting electrolyte used in the electrodeposition also has a pronounced effect on the formation of the nanowalls, due to the adsorption of Cl− ions on the preferred (0001) growth plane of ZnO and thereby redirecting growth on the (100) and (20) planes. Furthermore, evolution from the formation of ZnO nanowalls to formation of nanowires is observed as the KCl concentration is reduced in the electrolyte. The crystalline properties and growth directions of the as-synthesized ZnO nanostructures are studied in details by glancing-incidence X-ray diffraction and transmission electron microscopy
Combination of Spectral and Binaurally Created Harmonics in a Common Central Pitch Processor
A fundamental attribute of human hearing is the ability to extract a residue pitch from harmonic complex sounds such as those produced by musical instruments and the human voice. However, the neural mechanisms that underlie this processing are unclear, as are the locations of these mechanisms in the auditory pathway. The ability to extract a residue pitch corresponding to the fundamental frequency from individual harmonics, even when the fundamental component is absent, has been demonstrated separately for conventional pitches and for Huggins pitch (HP), a stimulus without monaural pitch information. HP is created by presenting the same wideband noise to both ears, except for a narrowband frequency region where the noise is decorrelated across the two ears. The present study investigated whether residue pitch can be derived by combining a component derived solely from binaural interaction (HP) with a spectral component for which no binaural processing is required. Fifteen listeners indicated which of two sequentially presented sounds was higher in pitch. Each sound consisted of two “harmonics,” which independently could be either a spectral or a HP component. Component frequencies were chosen such that the relative pitch judgement revealed whether a residue pitch was heard or not. The results showed that listeners were equally likely to perceive a residue pitch when one component was dichotic and the other was spectral as when the components were both spectral or both dichotic. This suggests that there exists a single mechanism for the derivation of residue pitch from binaurally created components and from spectral components, and that this mechanism operates at or after the level of the dorsal nucleus of the lateral lemniscus (brainstem) or the inferior colliculus (midbrain), which receive inputs from the medial superior olive where temporal information from the two ears is first combined
Role of lysophosphatidic acid receptor LPA2 in the development of allergic airway inflammation in a murine model of asthma
<p>Abstract</p> <p>Background</p> <p>Lysophosphatidic acid (LPA) plays a critical role in airway inflammation through G protein-coupled LPA receptors (LPA<sub>1-3</sub>). We have demonstrated that LPA induced cytokine and lipid mediator release in human bronchial epithelial cells. Here we provide evidence for the role of LPA and LPA receptors in Th2-dominant airway inflammation.</p> <p>Methods</p> <p/> <p>Wild type, LPA<sub>1 </sub>heterozygous knockout mice (LPA<sub>1</sub><sup>+/-</sup>), and LPA<sub>2 </sub>heterozygous knockout mice (LPA<sub>2</sub><sup>+/-</sup>) were sensitized with inactivated <it>Schistosoma mansoni </it>eggs and local antigenic challenge with <it>Schistosoma mansoni </it>soluble egg Ag (SEA) in the lungs. Bronchoalveolar larvage (BAL) fluids and lung tissues were collected for analysis of inflammatory responses. Further, tracheal epithelial cells were isolated and challenged with LPA.</p> <p>Results</p> <p>BAL fluids from <it>Schistosoma mansoni </it>egg-sensitized and challenged wild type mice (4 days of challenge) showed increase of LPA level (~2.8 fold), compared to control mice. LPA<sub>2</sub><sup>+/- </sup>mice, but not LPA<sub>1</sub><sup>+/- </sup>mice, exposed to <it>Schistosoma mansoni </it>egg revealed significantly reduced cell numbers and eosinophils in BAL fluids, compared to challenged wild type mice. Both LPA<sub>2</sub><sup>+/- </sup>and LPA<sub>1</sub><sup>+/- </sup>mice showed decreases in bronchial goblet cells. LPA<sub>2</sub><sup>+/- </sup>mice, but not LPA<sub>1</sub><sup>+/- </sup>mice showed the decreases in prostaglandin E2 (PGE2) and LPA levels in BAL fluids after SEA challenge. The PGE2 production by LPA was reduced in isolated tracheal epithelial cells from LPA<sub>2</sub><sup>+/- </sup>mice. These results suggest that LPA and LPA receptors are involved in <it>Schistosoma mansoni </it>egg-mediated inflammation and further studies are proposed to understand the role of LPA and LPA receptors in the inflammatory process.</p
Glassy State Lead Tellurite Nanobelts: Synthesis and Properties
The lead tellurite nanobelts have been first synthesized in the composite molten salts (KNO3/LiNO3) method, which is cost-effective, one-step, easy to control, and performed at low-temperature and in ambient atmosphere. Scanning electron microscopy, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectrum, energy dispersive X-ray spectroscopy and FT-IR spectrum are used to characterize the structure, morphology, and composition of the samples. The results show that the as-synthesized products are amorphous and glassy nanobelts with widths of 200–300 nm and lengths up to tens of microns and the atomic ratio of Pb:Te:O is close to 1:1.5:4. Thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC) and investigations of the corresponding structure and morphology change confirm that the nanobelts have low glass transition temperature and thermal stability. Optical diffuse reflectance spectrum indicates that the lead tellurite nanobelts have two optical gaps at ca. 3.72 eV and 4.12 eV. Photoluminescence (PL) spectrum and fluorescence imaging of the products exhibit a blue emission (round 480 nm)
Differential regulation of nuclear and mitochondrial Bcl-2 in T cell apoptosis
Activated T cells require anti-apoptotic cytokines for their survival. The anti-apoptotic effects of these factors are mediated by their influence on the balance of expression and localisation of pro- and anti-apoptotic members of the Bcl-2 family. Among the anti-apoptotic Bcl-2 family members, the expression level of Bcl-2 itself and its interaction with the pro-apoptotic protein Bim are now regarded as crucial for the regulation of survival in activated T cells. We studied the changes in Bcl-2 levels and its subcellular distribution in relation to mitochondrial depolarisation and caspase activation in survival factor deprived T cells. Intriguingly, the total Bcl-2 level appeared to remain stable, even after caspase 3 activation indicated entry into the execution phase of apoptosis. However, cell fractionation experiments showed that while the dominant nuclear pool of Bcl-2 remained stable during apoptosis, the level of the smaller mitochondrial pool was rapidly downregulated. Signals induced by anti-apoptotic cytokines continuously replenish the mitochondrial pool, but nuclear Bcl-2 is independent of such signals. Mitochondrial Bcl-2 is lost rapidly by a caspase independent mechanism in the absence of survival factors, in contrast only a small proportion of the nuclear pool of Bcl-2 is lost during the execution phase and this loss is a caspase dependent process. We conclude that these two intracellular pools of Bcl-2 are regulated through different mechanisms and only the cytokine-mediated regulation of the mitochondrial pool is relevant to the control of the initiation of apoptosis
Functional Analysis of General Odorant Binding Protein 2 from the Meadow Moth, Loxostege sticticalis L. (Lepidoptera: Pyralidae)
Odorant binding proteins play a crucial role in transporting semiochemicals across the sensillum lymph to olfactory receptors within the insect antennal sensilla. In this study, the general odorant binding protein 2 gene was cloned from the antennae of Loxostege sticticalis, using reverse transcription PCR and rapid amplification of cDNA ends. Recombinant LstiGOBP2 was expressed in Escherichia coli and purified by Ni ion affinity chromatography. Real-time PCR assays indicated that LstiGOBP2 mRNA is expressed mainly in adult antennae, with expression levels differing with developmental age. Ligand-binding experiments using N-phenyl-naphthylamine (1-NPN) as a fluorescent probe demonstrated that the LstiGOBP2 protein has binding affinity to a broad range of odorants. Most importantly, trans-11-tetradecen-1-yl acetate, the pheromone component of Loxostege sticticalis, and trans-2-hexenal and cis-3-hexen-1-ol, the most abundant plant volatiles in essential oils extracted from host plants, had high binding affinities to LstiGOBP2 and elicited strong electrophysiological responses from the antennae of adults
Bilateral Dorsal Cochlear Nucleus Lesions Prevent Acoustic-Trauma Induced Tinnitus in an Animal Model
Animal experiments suggest that chronic tinnitus (“ringing in the ears”) may result from processes that overcompensate for lost afferent input. Abnormally elevated spontaneous neural activity has been found in the dorsal cochlear nucleus (DCN) of animals with psychophysical evidence of tinnitus. However, it has also been reported that DCN ablation fails to reduce established tinnitus. Since other auditory areas have been implicated in tinnitus, the role of the DCN is unresolved. The apparently conflicting electrophysiological and lesion data can be reconciled if the DCN serves as a necessary trigger zone rather than a chronic generator of tinnitus. The present experiment used lesion procedures identical to those that failed to decrease pre-existing tinnitus. The exception was that lesions were done prior to tinnitus induction. Young adult rats were trained and tested using a psychophysical procedure shown to detect tinnitus. Tinnitus was induced by a single unilateral high-level noise exposure. Consistent with the trigger hypothesis, bilateral dorsal DCN lesions made before high-level noise exposure prevented the development of tinnitus. A protective effect stemming from disruption of the afferent pathway could not explain the outcome because unilateral lesions ipsilateral to the noise exposure did not prevent tinnitus and unilateral lesions contralateral to the noise exposure actually exacerbated the tinnitus. The DCN trigger mechanism may involve plastic circuits that, through loss of inhibition, or upregulation of excitation, increase spontaneous neural output to rostral areas such as the inferior colliculus. The increased drive could produce persistent pathological changes in the rostral areas, such as high-frequency bursting and decreased interspike variance, that comprise the chronic tinnitus signal
- …