5 research outputs found

    Imaging Evaluation of Collaterals in the Brain: Physiology and Clinical Translation

    No full text
    The cerebral collateral circulation is a network of blood vessels designed to preserve cerebral blood flow when primary routes fail. Though recognized for hundreds of years, the beneficial influence of collateral flow has now gained significant attention due to widely available, rapid, and real-time non-invasive imaging techniques. Multimodal CT and MRI based techniques, with angiographic and perfusion assessments, are becoming mainstays in the care of patients with ischemic brain disease. These methods allow for precise delineation of the structural and functional aspects of cerebral blood flow and as such provide valuable information that can inform the diagnosis and treatment of cerebral ischemia, in both the acute and chronic setting

    Assessing written work by determining competence to achieve the module-specific learning outcomes.

    No full text
    This chapter describes lasers and other sources of coherent light that operate in a wide wavelength range. First, the general principles for the generation of coherent continuous-wave and pulsed radiation are treated including the interaction of radiation with matter, the properties of optical resonators and their modes as well as such processes as Q-switching and mode-locking. The general introduction is followed by sections on numerous types of lasers, the emphasis being on todayʼs most important sources of coherent light, in particular on solid-state lasers and several types of gas lasers. An important part of the chapter is devoted to the generation of coherent radiation by nonlinear processes with optical parametric oscillators, difference- and sum-frequency generation, and high-order harmonics. Radiation in the extended ultraviolet (EUV) and x-ray ranges can be generated by free electron lasers (FEL) and advanced x-ray sources. Ultrahigh light intensities up to 1021 W/cm2 open the door to studies of relativistic laser–matter interaction and laser particle acceleration. The chapter closes with a section on laser stabilization
    corecore