77 research outputs found

    Disturbed oscillatory brain dynamics in subcortical ischemic vascular dementia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>White matter hyperintensities (WMH) can lead to dementia but the underlying physiological mechanisms are unclear. We compared relative oscillatory power from electroencephalographic studies (EEGs) of 17 patients with subcortical ischemic vascular dementia, based on extensive white matter hyperintensities (SIVD-WMH) with 17 controls to investigate physiological changes underlying this diagnosis.</p> <p>Results</p> <p>Differences between the groups were large, with a decrease of relative power of fast activity in patients (alpha power 0.25 ± 0.12 versus 0.38 ± 0.13, p = 0.01; beta power 0.08 ± 0.04 versus 0.19 ± 0.07; p<0.001) and an increase in relative powers of slow activity in patients (theta power 0.32 ± 0.11 versus 0.14 ± 0.09; p<0.001 and delta power 0.31 ± 0.14 versus 0.23 ± 0.09; p<0.05). Lower relative beta power was related to worse cognitive performance in a linear regression analysis (standardized beta = 0.67, p<0.01).</p> <p>Conclusions</p> <p>This pattern of disturbance in oscillatory brain activity indicate loss of connections between neurons, providing a first step in the understanding of cognitive dysfunction in SIVD-WMH.</p

    Local Difference Measures between Complex Networks for Dynamical System Model Evaluation

    Get PDF
    Acknowledgments We thank Reik V. Donner for inspiring suggestions that initialized the work presented herein. Jan H. Feldhoff is credited for providing us with the STARS simulation data and for his contributions to fruitful discussions. Comments by the anonymous reviewers are gratefully acknowledged as they led to substantial improvements of the manuscript.Peer reviewedPublisher PD

    Progressive Rearrangement of Telomeric Sequences Added to Both the ITR Ends of the Yeast Linear pGKL Plasmid

    Get PDF
    Relocation into the nucleus of the yeast cytoplasmic linear plasmids was studied using a monitor plasmid pCLU1. In Saccharomyces cerevisiae, the nuclearly-relocated pCLU1 replicated in a linear form (termed pTLU-type plasmid) which carried the host telomeric repeats TG(1-3) of 300-350 bp at both ends. The telomere sequences mainly consisted of a major motif TGTGTGGGTGTGG which was complementary to part of the RNA template of yeast telomerase and were directly added to the very end of the pCLU1-terminal element ITR (inverted terminal repeat), suggesting that the ITR end played a role as a substrate of telomerase. The telomere sequences varied among isolated pTLU-type plasmids, but the TG(1-3) organization was symmetrically identical on both ends of any one plasmid. During cell growth under non-selective condition, the telomeric repeat sequences were progressively rearranged on one side, but not on the opposite side of pTLU plasmid ends. This indicates that the mode of telomeric DNA replication or repair differed between both ends. Clonal analysis showed that the intense rearrangement of telomeric DNA was closely associated with extreme instability of pTLU plasmids

    Comparing unilateral and bilateral upper limb training: The ULTRA-stroke program design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>About 80% of all stroke survivors have an upper limb paresis immediately after stroke, only about a third of whom (30 to 40%) regain some dexterity within six months following conventional treatment programs. Of late, however, two recently developed interventions - constraint-induced movement therapy (CIMT) and bilateral arm training with rhythmic auditory cueing (BATRAC) - have shown promising results in the treatment of upper limb paresis in chronic stroke patients. The ULTRA-stroke (acronym for Upper Limb TRaining After stroke) program was conceived to assess the effectiveness of these interventions in subacute stroke patients and to examine how the observed changes in sensori-motor functioning relate to changes in stroke recovery mechanisms associated with peripheral stiffness, interlimb interactions, and cortical inter- and intrahemispheric networks. The present paper describes the design of this single-blinded randomized clinical trial (RCT), which has recently started and will take several years to complete.</p> <p>Methods/Design</p> <p>Sixty patients with a first ever stroke will be recruited. Patients will be stratified in terms of their remaining motor ability at the distal part of the arm (i.e., wrist and finger movements) and randomized over three intervention groups receiving modified CIMT, modified BATRAC, or an equally intensive (i.e., dose-matched) conventional treatment program for 6 weeks. Primary outcome variable is the score on the Action Research Arm test (ARAT), which will be assessed before, directly after, and 6 weeks after the intervention. During those test sessions all patients will also undergo measurements aimed at investigating the associated recovery mechanisms using haptic robots and magneto-encephalography (MEG).</p> <p>Discussion</p> <p>ULTRA-stroke is a 3-year translational research program which aims (1) to assess the relative effectiveness of the three interventions, on a group level but also as a function of patient characteristics, and (2) to delineate the functional and neurophysiological changes that are induced by those interventions.</p> <p>The outcome on the ARAT together with information about changes in the associated mechanisms will provide a better understanding of how specific therapies influence neurobiological changes, and which post-stroke conditions lend themselves to specific treatments.</p> <p>Trial Registration</p> <p>The ULTRA-stroke program is registered at the Netherlands Trial Register (NTR, <url>http://www.trialregister.nl</url>, number NTR1665).</p

    Graph Theoretical Analysis of Functional Brain Networks: Test-Retest Evaluation on Short- and Long-Term Resting-State Functional MRI Data

    Get PDF
    Graph-based computational network analysis has proven a powerful tool to quantitatively characterize functional architectures of the brain. However, the test-retest (TRT) reliability of graph metrics of functional networks has not been systematically examined. Here, we investigated TRT reliability of topological metrics of functional brain networks derived from resting-state functional magnetic resonance imaging data. Specifically, we evaluated both short-term (<1 hour apart) and long-term (>5 months apart) TRT reliability for 12 global and 6 local nodal network metrics. We found that reliability of global network metrics was overall low, threshold-sensitive and dependent on several factors of scanning time interval (TI, long-term>short-term), network membership (NM, networks excluding negative correlations>networks including negative correlations) and network type (NT, binarized networks>weighted networks). The dependence was modulated by another factor of node definition (ND) strategy. The local nodal reliability exhibited large variability across nodal metrics and a spatially heterogeneous distribution. Nodal degree was the most reliable metric and varied the least across the factors above. Hub regions in association and limbic/paralimbic cortices showed moderate TRT reliability. Importantly, nodal reliability was robust to above-mentioned four factors. Simulation analysis revealed that global network metrics were extremely sensitive (but varying degrees) to noise in functional connectivity and weighted networks generated numerically more reliable results in compared with binarized networks. For nodal network metrics, they showed high resistance to noise in functional connectivity and no NT related differences were found in the resistance. These findings provide important implications on how to choose reliable analytical schemes and network metrics of interest

    What is the role of the film viewer? The effects of narrative comprehension and viewing task on gaze control in film

    Get PDF
    Film is ubiquitous, but the processes that guide viewers' attention while viewing film narratives are poorly understood. In fact, many film theorists and practitioners disagree on whether the film stimulus (bottom-up) or the viewer (top-down) is more important in determining how we watch movies. Reading research has shown a strong connection between eye movements and comprehension, and scene perception studies have shown strong effects of viewing tasks on eye movements, but such idiosyncratic top-down control of gaze in film would be anathema to the universal control mainstream filmmakers typically aim for. Thus, in two experiments we tested whether the eye movements and comprehension relationship similarly held in a classic film example, the famous opening scene of Orson Welles' Touch of Evil (Welles & Zugsmith, Touch of Evil, 1958). Comprehension differences were compared with more volitionally controlled task-based effects on eye movements. To investigate the effects of comprehension on eye movements during film viewing, we manipulated viewers' comprehension by starting participants at different points in a film, and then tracked their eyes. Overall, the manipulation created large differences in comprehension, but only produced modest differences in eye movements. To amplify top-down effects on eye movements, a task manipulation was designed to prioritize peripheral scene features: a map task. This task manipulation created large differences in eye movements when compared to participants freely viewing the clip for comprehension. Thus, to allow for strong, volitional top-down control of eye movements in film, task manipulations need to make features that are important to narrative comprehension irrelevant to the viewing task. The evidence provided by this experimental case study suggests that filmmakers' belief in their ability to create systematic gaze behavior across viewers is confirmed, but that this does not indicate universally similar comprehension of the film narrative

    Seizure prediction : ready for a new era

    Get PDF
    Acknowledgements: The authors acknowledge colleagues in the international seizure prediction group for valuable discussions. L.K. acknowledges funding support from the National Health and Medical Research Council (APP1130468) and the James S. McDonnell Foundation (220020419) and acknowledges the contribution of Dean R. Freestone at the University of Melbourne, Australia, to the creation of Fig. 3.Peer reviewedPostprin
    corecore