78 research outputs found

    Childhood craniopharyngioma: greater hypothalamic involvement before surgery is associated with higher homeostasis model insulin resistance index

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity seems to be linked to the hypothalamic involvement in craniopharyngioma. We evaluated the pre-surgery relationship between the degree of this involvement on magnetic resonance imaging and insulin resistance, as evaluated by the homeostasis model insulin resistance index (HOMA). As insulin-like growth factor 1, leptin, soluble leptin receptor (sOB-R) and ghrelin may also be involved, we compared their plasma concentrations and their link to weight change.</p> <p>Methods</p> <p>27 children with craniopharyngioma were classified as either grade 0 (n = 7, no hypothalamic involvement), grade 1 (n = 8, compression without involvement), or grade 2 (n = 12, severe involvement).</p> <p>Results</p> <p>Despite having similar body mass indexes (BMI), the grade 2 patients had higher glucose, insulin and HOMA before surgery than the grade 0 (P = 0.02, <0.05 and 0.02 respectively) and 1 patients (P < 0.02 and <0.03 for both insulin and HOMA). The grade 0 (5.8 ± 4.9) and 1 (7.2 ± 5.3) patients gained significantly less weight (kg) during the year after surgery than did the grade 2 (16.3 ± 7.4) patients. The pre-surgery HOMA was positively correlated with these weight changes (P < 0.03).</p> <p>The data for the whole population before and 6–18 months after surgery showed increases in BMI (P < 0.0001), insulin (P < 0.005), and leptin (P = 0.0005), and decreases in sOB-R (P < 0.04) and ghrelin (P < 0.03).</p> <p>Conclusion</p> <p>The hypothalamic involvement by the craniopharyngioma before surgery seems to determine the degree of insulin resistance, regardless of the BMI. The pre-surgery HOMA values were correlated with the post-surgery weight gain. This suggests that obesity should be prevented by reducing inn secretion in those cases with hypothalamic involvement.</p

    Mechanistic insight into the sensing of nitroaromatic compounds by metal-organic frameworks

    Get PDF
    There has been extensive research on the sensing of explosive nitroaromatic compounds (NACs) using fluorescent metal-organic frameworks (MOFs). However, ambiguity in the sensing mechanism has hampered the development of efficient explosive sensors. Here we report the synthesis of a hydroxyl-functionalized MOF for rapid and efficient sensing of NACs and examine in detail its fluorescence quenching mechanisms. In chloroform, quenching takes place primarily by exciton migration to the ground-state complex formed between the MOF and the analytes. A combination of hydrogen-bonding interactions and ??????? stacking interactions are responsible for fluorescence quenching, and this observation is supported by single-crystal structures. In water, the quenching mechanism shifts toward resonance energy transfer and photo-induced electron transfer, after exciton migration as in chloroform. This study provides insight into florescence-quenching mechanisms for the selective sensing of NACs and reduces the ambiguity regarding the nature of interactions between the MOF and NACs

    Genetic and Physical Interactions between Tel2 and the Med15 Mediator Subunit in Saccharomyces cerevisiae

    Get PDF
    International audienceBACKGROUND: In budding yeast, the highly conserved Tel2 protein is part of several complexes and its main function is now believed to be in the biogenesis of phosphatidyl inositol 3-kinase related kinases. PRINCIPAL FINDINGS: To uncover potentially novel functions of Tel2, we set out to isolate temperature-sensitive (ts) mutant alleles of TEL2 in order to perform genetic screenings. MED15/GAL11, a subunit of Mediator, a general regulator of transcription, was isolated as a suppressor of these mutants. The isolated tel2 mutants exhibited a short telomere phenotype that was partially rescued by MED15/GAL11 overexpression. The tel2-15 mutant was markedly deficient in the transcription of EST2, coding for the catalytic subunit of telomerase, potentially explaining the short telomere phenotype of this mutant. In parallel, a two-hybrid screen identified an association between Tel2 and Rvb2, a highly conserved member of the AAA+ family of ATPases further found by in vivo co-immunoprecipitation to be tight and constitutive. Transiently overproduced Tel2 and Med15/Gal11 associated together, suggesting a potential role for Tel2 in transcription. Other Mediator subunits, as well as SUA7/TFIIB, also rescued the tel2-ts mutants. SIGNIFICANCE: Altogether, the present data suggest the existence of a novel role for Tel2, namely in transcription, possibly in cooperation with Rvb2 and involving the existence of physical interactions with the Med15/Gal11 Mediator subunit

    Meta-Profiles of Gene Expression during Aging: Limited Similarities between Mouse and Human and an Unexpectedly Decreased Inflammatory Signature

    Get PDF
    Background: Skin aging is associated with intrinsic processes that compromise the structure of the extracellular matrix while promoting loss of functional and regenerative capacity. These processes are accompanied by a large-scale shift in gene expression, but underlying mechanisms are not understood and conservation of these mechanisms between humans and mice is uncertain. Results: We used genome-wide expression profiling to investigate the aging skin transcriptome. In humans, age-related shifts in gene expression were sex-specific. In females, aging increased expression of transcripts associated with T-cells, B-cells and dendritic cells, and decreased expression of genes in regions with elevated Zeb1, AP-2 and YY1 motif density. In males, however, these effects were contrasting or absent. When age-associated gene expression patterns in human skin were compared to those in tail skin from CB6F1 mice, overall human-mouse correspondence was weak. Moreover, inflammatory gene expression patterns were not induced with aging of mouse tail skin, and well-known aging biomarkers were in fact decreased (e.g., Clec7a, Lyz1 and Lyz2). These unexpected patterns and weak human-mouse correspondence may be due to decreased abundance of antigen presenting cells in mouse tail skin with age. Conclusions: Aging is generally associated with a pro-inflammatory state, but we have identified an exception to this pattern with aging of CB6F1 mouse tail skin. Aging therefore does not uniformly heighten inflammatory status across all mouse tissues. Furthermore, we identified both intercellular and intracellular mechanisms of transcriptome aging, including those that are sex- and species-specific

    Activation Status of Wnt/ß-Catenin Signaling in Normal and Neoplastic Breast Tissues: Relationship to HER2/neu Expression in Human and Mouse

    Get PDF
    Wnt/ß-catenin signaling is strongly implicated in neoplasia, but the role of this pathway in human breast cancer has been controversial. Here, we examined Wnt/ß-catenin pathway activation as a function of breast cancer progression, and tested for a relationship with HER2/neu expression, using a human tissue microarray comprising benign breast tissues, ductal carcinoma in situ (DCIS), and invasive carcinomas. Cores were scored for membranous ß-catenin, a key functional component of adherens junctions, and for nucleocytoplasmic ß-catenin, a hallmark of Wnt/ß-catenin pathway activation. Only 82% of benign samples exhibited membrane-associated ß-catenin, indicating a finite frequency of false-negative staining. The frequency of membrane positivity was similar in DCIS samples, but was significantly reduced in carcinomas (45%, P<0.001), consistent with loss of adherens junctions during acquisition of invasiveness. Negative membrane status in cancers correlated with higher grade (P = 0.04) and estrogen receptor-negative status (P = 0.03), both indices of poor prognosis. Unexpectedly, a substantial frequency of nucleocytoplasmic ß-catenin was observed in benign breast tissues (36%), similar to that in carcinomas (35%). Positive-staining basal nuclei observed in benign breast may identify putative stem cells. An increased frequency of nucleocytoplasmic ß-catenin was observed in DCIS tumors (56%), suggesting that pathway activation may be an early event in human breast neoplasia. A correlation was observed between HER2/neu expression and nucleocytoplasmic ß-catenin in node-positive carcinomas (P = 0.02). Furthermore, cytoplasmic ß-catenin was detected in HER2/neu-induced mouse mammary tumors. The Axin2NLSlacZ mouse strain, a previously validated reporter of mammary Wnt/ß-catenin signaling, was utilized to define in vivo transcriptional consequences of HER2/neu-induced ß-catenin accumulation. Discrete hyperplastic foci observed in mammary glands from bigenic MMTV/neu, Axin2NLSlacZ mice, highlighted by robust ß-catenin/TCF signaling, likely represent the earliest stage of mammary intraepithelial neoplasia in MMTV/neu mice. Our study thus provides provocative evidence for Wnt/ß-catenin signaling as an early, HER2/neu-inducible event in breast neoplasia

    Neural Correlates of Ongoing Conscious Experience: Both Task-Unrelatedness and Stimulus-Independence Are Related to Default Network Activity

    Get PDF
    The default mode network (DMN) is a set of brain regions that consistently shows higher activity at rest compared to tasks requiring sustained focused attention toward externally presented stimuli. The cognitive processes that the DMN possibly underlies remain a matter of debate. It has alternately been proposed that DMN activity reflects unfocused attention toward external stimuli or the occurrence of internally generated thoughts. The present study aimed at clarifying this issue by investigating the neural correlates of the various kinds of conscious experiences that can occur during task performance. Four classes of conscious experiences (i.e., being fully focused on the task, distractions by irrelevant sensations/perceptions, interfering thoughts related to the appraisal of the task, and mind-wandering) that varied along two dimensions (“task-relatedness” and “stimulus-dependency”) were sampled using thought-probes while the participants performed a go/no-go task. Analyses performed on the intervals preceding each probe according to the reported subjective experience revealed that both dimensions are relevant to explain activity in several regions of the DMN, namely the medial prefrontal cortex, posterior cingulate cortex/precuneus, and posterior inferior parietal lobe. Notably, an additive effect of the two dimensions was demonstrated for midline DMN regions. On the other hand, lateral temporal regions (also part of the DMN) were specifically related to stimulus-independent reports. These results suggest that midline DMN regions underlie cognitive processes that are active during both internal thoughts and external unfocused attention. They also strengthen the view that the DMN can be fractionated into different subcomponents and reveal the necessity to consider both the stimulus-dependent and the task-related dimensions of conscious experiences when studying the possible functional roles of the DMN

    Key signaling nodes in mammary gland development and cancer: β-catenin

    Get PDF
    β-Catenin plays important roles in mammary development and tumorigenesis through its functions in cell adhesion, signal transduction and regulation of cell-context-specific gene expression. Studies in mice have highlighted the critical role of β-catenin signaling for stem cell biology at multiple stages of mammary development. Deregulated β-catenin signaling disturbs stem and progenitor cell dynamics and induces mammary tumors in mice. Recent data showing deregulated β-catenin signaling in metaplastic and basal-type tumors suggest a similar link to reactivated developmental pathways and human breast cancer. The present review will discuss β-catenin as a central transducer of numerous signaling pathways and its role in mammary development and breast cancer

    Body mass index and musculoskeletal pain: is there a connection?

    Get PDF
    corecore