153 research outputs found

    Determining level of care appropriateness in the patient journey from acute care to rehabilitation

    Get PDF
    Background: The selection of patients for rehabilitation, and the timing of transfer from acute care, are important clinical decisions that impact on care quality and patient flow. This paper reports utilization review data on inpatients in acute care with stroke, hip fracture or elective joint replacement, and other inpatients referred for rehabilitation. It examines reasons why acute level of care criteria are not met and explores differences in decision making between acute care and rehabilitation teams around patient appropriateness and readiness for transfer. Methods: Cohort study of patients in a large acute referral hospital in Australia followed with the InterQual utilization review tool, modified to also include reasons why utilization criteria are not met. Additional data on team decision making about appropriateness for rehabilitation, and readiness for transfer, were collected on a subset of patients. Results: There were 696 episodes of care (7189 bed days). Days meeting acute level of care criteria were 56% (stroke, hip fracture and joint replacement patients) and 33% (other patients, from the time of referral). Most inappropriate days in acute care were due to delays in processes/scheduling (45%) or being more appropriate for rehabilitation or lower level of care (30%). On the subset of patients, the acute care team and the utilization review tool deemed patients ready for rehabilitation transfer earlier than the rehabilitation team (means of 1.4, 1.3 and 4.0 days from the date of referral, respectively). From when deemed medically stable for transfer by the acute care team, 28% of patients became unstable. From when deemed stable by the rehabilitation team or utilization review, 9% and 11%, respectively, became unstable. Conclusions: A high proportion of patient days did not meet acute level of care criteria, due predominantly to inefficiencies in care processes, or to patients being more appropriate for an alternative level of care, including rehabilitation. The rehabilitation team was the most accurate in determining ongoing medical stability, but at the cost of a longer acute stay. To avoid inpatients remaining in acute care in a state of \u27terra nullius\u27, clinical models which provide rehabilitation within acute care, and more efficient movement to a rehabilitation setting, is required. Utilization review could have a decision support role in the determination of medical stability

    A genome-wide DNA methylation study in colorectal carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We performed a genome-wide scan of 27,578 CpG loci covering 14,475 genes to identify differentially methylated loci (DML) in colorectal carcinoma (CRC).</p> <p>Methods</p> <p>We used Illumina's Infinium methylation assay in paired DNA samples extracted from 24 fresh frozen CRC tissues and their corresponding normal colon tissues from 24 consecutive diagnosed patients at a tertiary medical center.</p> <p>Results</p> <p>We found a total of 627 DML in CRC covering 513 genes, of which 535 are novel DML covering 465 genes. We also validated the Illumina Infinium methylation data for top-ranking genes by non-bisulfite conversion q-PCR-based methyl profiler assay in a subset of the same samples. We also carried out integration of genome-wide copy number and expression microarray along with methylation profiling to see the functional effect of methylation. Gene Set Enrichment Analysis (GSEA) showed that among the major "gene sets" that are hypermethylated in CRC are the sets: "inhibition of adenylate cyclase activity by G-protein signaling", "Rac guanyl-nucleotide exchange factor activity", "regulation of retinoic acid receptor signaling pathway" and "estrogen receptor activity". Two-level nested cross validation showed that DML-based predictive models may offer reasonable sensitivity (around 89%), specificity (around 95%), positive predictive value (around 95%) and negative predictive value (around 89%), suggesting that these markers may have potential clinical application.</p> <p>Conclusion</p> <p>Our genome-wide methylation study in CRC clearly supports most of the previous findings; additionally we found a large number of novel DML in CRC tissue. If confirmed in future studies, these findings may lead to identification of genomic markers for potential clinical application.</p

    Swarming populations of Salmonella represent a unique physiological state coupled to multiple mechanisms of antibiotic resistance

    Get PDF
    Salmonella enterica serovar Typhimurium is capable of swarming over semi-solid surfaces. Although its swarming behavior shares many readily observable similarities with other swarming bacteria, the phenomenon remains somewhat of an enigma in this bacterium since some attributes skew away from the better characterized systems. Swarming is quite distinct from the classic swimming motility, as there is a prerequisite for cells to first undergo a morphological transformation into swarmer cells. In some organisms, swarming is controlled by quorum sensing, and in others, swarming has been shown to be coupled to increased expression of important virulence factors. Swarming in serovar Typhimurium is coupled to elevated resistance to a wide variety of structurally and functionally distinct classes of antimicrobial compounds. As serovar Typhimurium differentiates into swarm cells, the pmrHFIJKLM operon is up-regulated, resulting in a more positively charged LPS core. Furthermore, as swarm cells begin to de-differentiate, the pmr operon expression is down-regulated, rapidly reaching the levels observed in swim cells. This is one potential mechanism which confers swarm cells increased resistance to antibiotics such as the cationic antimicrobial peptides. However, additional mechanisms are likely associated with the cells in the swarm state that confer elevated resistance to such a broad spectrum of antimicrobial agents

    Comprehensive profiling of DNA methylation in colorectal cancer reveals subgroups with distinct clinicopathological and molecular features

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most previous studies of the CpG island methylator phenotype (CIMP) in colorectal cancer (CRC) have been conducted on a relatively small numbers of CpG sites. In the present study we performed comprehensive DNA methylation profiling of CRC with the aim of characterizing CIMP subgroups.</p> <p>Methods</p> <p>DNA methylation at 1,505 CpG sites in 807 cancer-related genes was evaluated using the Illumina GoldenGate<sup>® </sup>methylation array in 28 normal colonic mucosa and 91 consecutive CRC samples. Methylation data was analyzed using unsupervised hierarchical clustering. CIMP subgroups were compared for various clinicopathological and molecular features including patient age, tumor site, microsatellite instability (MSI), methylation at a consensus panel of CpG islands and mutations in <it>BRAF </it>and <it>KRAS</it>.</p> <p>Results</p> <p>A total of 202 CpG sites were differentially methylated between tumor and normal tissue. Unsupervised hierarchical clustering of methylation data from these sites revealed the existence of three CRC subgroups referred to as CIMP-low (CIMP-L, 21% of cases), CIMP-mid (CIMP-M, 14%) and CIMP-high (CIMP-H, 65%). In comparison to CIMP-L tumors, CIMP-H tumors were more often located in the proximal colon and showed more frequent mutation of <it>KRAS </it>and <it>BRAF </it>(<it>P </it>< 0.001).</p> <p>Conclusions</p> <p>Comprehensive DNA methylation profiling identified three CRC subgroups with distinctive clinicopathological and molecular features. This study suggests that both <it>KRAS </it>and <it>BRAF </it>mutations are involved with the CIMP-H pathway of CRC rather than with distinct CIMP subgroups.</p

    Image-guided intensity modulated radiotherapy with helical tomotherapy for postoperative treatment of high-risk oral cavity cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to assess the treatment results and toxicity profiles of helical tomotherapy (HT) for postoperative high-risk oral cavity cancer.</p> <p>Methods</p> <p>From December 6, 2006 through October 9, 2009, 19 postoperative high-risk oral cavity cancer patients were enrolled. All of the patients received HT with (84%) or without (16%) chemotherapy.</p> <p>Results</p> <p>The median follow-up time was 17 months. The 2-year overall survival, disease-free survival, locoregional control, and distant metastasis-free rates were 94%, 84%, 92%, and 94%, respectively. The package of overall treatment time > 13 wk, the interval between surgery and radiation ≤ 6 wk, and the overall treatment time of radiation ≤ 7 wk was 21%, 84%, and 79%, respectively. The percentage of grade 3 mucositis, dermatitis, and leucopenia was 42%, 5% and 5%, respectively.</p> <p>Conclusions</p> <p>HT achieved encouraging clinical outcomes for postoperative high-risk oral cavity cancer patients with high compliance. A long-term follow-up study is needed to confirm these preliminary findings.</p

    ZIC1 Is Downregulated through Promoter Hypermethylation, and Functions as a Tumor Suppressor Gene in Colorectal Cancer

    Get PDF
    The transcription factor, Zinc finger of the cerebellum (ZIC1), plays a crucial role in vertebrate development. Recently, ZIC1 has also been found to participate in the progression of human cancers, including medulloblastomas, endometrial cancers, and mesenchymal neoplasms. However, the function of ZIC1 in colon cancer progression has not been defined. In this study, we demonstrate ZIC1 to be silenced or significantly downregulated in colon cancer cell lines. These effects were reversed by demethylation treatment with 5-aza-2′-deoxycytidine (Aza). ZIC1 expression is also significantly downregulated in primary colorectal cancer tissues relative to adjacent non-tumor tissues (p = 0.0001). Furthermore, methylation of ZIC1 gene promoter is frequently detected in primary tumor tissues (85%, 34/40), but not in adjacent non-tumor tissues. Ectopic expression of ZIC1 suppresses cell proliferation and induces apoptosis, which is associated with MAPK and PI3K/Akt pathways, as well as the Bcl-xl/Bad/Caspase3 cascade. To identify target candidates of ZIC1, we employed cDNA microarray and found that 337 genes are downregulated and 95 genes upregulated by ectopic expression of ZIC1, which were verified by 10 selected gene expressions by qRT-PCR. Taken together, our results suggest that ZIC1 may potentially function as a tumor suppressor gene, which is downregulated through promoter hypermethylation in colorectal cancers

    TGFBR2 and BAX Mononucleotide Tract Mutations, Microsatellite Instability, and Prognosis in 1072 Colorectal Cancers

    Get PDF
    Mononucleotide tracts in the coding regions of the TGFBR2 and BAX genes are commonly mutated in microsatellite instability-high (MSI-high) colon cancers. The receptor TGFBR2 plays an important role in the TGFB1 (transforming growth factor-β, TGF-β) signaling pathway, and BAX plays a key role in apoptosis. However, a role of TGFBR2 or BAX mononucleotide mutation in colorectal cancer as a prognostic biomarker remains uncertain.We utilized a database of 1072 rectal and colon cancers in two prospective cohort studies (the Nurses' Health Study and the Health Professionals Follow-up Study). Cox proportional hazards model was used to compute mortality hazard ratio (HR), adjusted for clinical, pathological and molecular features including the CpG island methylator phenotype (CIMP), LINE-1 methylation, and KRAS, BRAF and PIK3CA mutations. MSI-high was observed in 15% (162/1072) of all colorectal cancers. TGFBR2 and BAX mononucleotide mutations were detected in 74% (117/159) and 30% (48/158) of MSI-high tumors, respectively. In Kaplan-Meier analysis as well as univariate and multivariate Cox regression analyses, compared to microsatellite stable (MSS)/MSI-low cases, MSI-high cases were associated with superior colorectal cancer-specific survival [adjusted HR, 0.34; 95% confidence interval (CI), 0.20-0.57] regardless of TGFBR2 or BAX mutation status. Among MSI-high tumors, TGFBR2 mononucleotide mutation was associated with CIMP-high independent of other variables [multivariate odds ratio, 3.57; 95% CI, 1.66-7.66; p = 0.0011].TGFBR2 or BAX mononucleotide mutations are not associated with the patient survival outcome in MSI-high colorectal cancer. Our data do not support those mutations as prognostic biomarkers (beyond MSI) in colorectal carcinoma

    The effects of crude oil price volatility, stock price, exchange rate and interest rate on Malaysia’s economic growth

    Get PDF
    This study examines the effects and relationships between Malaysia’s economic growth and selected variables which are oil price volatility, stock price, real exchange rate and real interest rate. Using time-series data methodology, the study employs unit root test using Augmented Dickey–Fuller (ADF) and Phillips–Perron (PP), Auto-Regressive Distribution Lag (ARDL) model supplemented by Bounds F-Testing, Johansen-Julius Co-integration test and Granger causality test. The long�run equation derived from ARDL shows that there are positive relationships for stock price and real exchange rate whilst there are negative relationships between oil price volatility and real interest rate. Furthermore, Granger causality test shows that only stock price and real interest rates have an impact on Malaysia’s gross domestic product (GDP) in the short run. Finally, sound policy recommendations are suggested, in particular, to address oil price volatility in a forward looking manner as well as monetary-friendly measures to further support Malaysia’s economic growth
    corecore