16 research outputs found
Quantum and classical criticality in a dimerized quantum antiferromagnet
A quantum critical point (QCP) is a singularity in the phase diagram arising
due to quantum mechanical fluctuations. The exotic properties of some of the
most enigmatic physical systems, including unconventional metals and
superconductors, quantum magnets, and ultracold atomic condensates, have been
related to the importance of the critical quantum and thermal fluctuations near
such a point. However, direct and continuous control of these fluctuations has
been difficult to realize, and complete thermodynamic and spectroscopic
information is required to disentangle the effects of quantum and classical
physics around a QCP. Here we achieve this control in a high-pressure,
high-resolution neutron scattering experiment on the quantum dimer material
TlCuCl3. By measuring the magnetic excitation spectrum across the entire
quantum critical phase diagram, we illustrate the similarities between quantum
and thermal melting of magnetic order. We prove the critical nature of the
unconventional longitudinal ("Higgs") mode of the ordered phase by damping it
thermally. We demonstrate the development of two types of criticality, quantum
and classical, and use their static and dynamic scaling properties to conclude
that quantum and thermal fluctuations can behave largely independently near a
QCP.Comment: 6 pages, 4 figures. Original version, published version available
from Nature Physics websit
Peroxisomal alterations in Alzheimer’s disease
In Alzheimer’s disease (AD), lipid alterations are present early during disease progression. As some of these alterations point towards a peroxisomal dysfunction, we investigated peroxisomes in human postmortem brains obtained from the cohort-based, longitudinal Vienna-Transdanube Aging (VITA) study. Based on the neuropathological Braak staging for AD on one hemisphere, the patients were grouped into three cohorts of increasing severity (stages I–II, III–IV, and V–VI, respectively). Lipid analyses of cortical regions from the other hemisphere revealed accumulation of C22:0 and very long-chain fatty acids (VLCFA, C24:0 and C26:0), all substrates for peroxisomal β-oxidation, in cases with stages V–VI pathology compared with those modestly affected (stages I–II). Conversely, the level of plasmalogens, which need intact peroxisomes for their biosynthesis, was decreased in severely affected tissues, in agreement with a peroxisomal dysfunction. In addition, the peroxisomal volume density was increased in the soma of neurons in gyrus frontalis at advanced AD stages. Confocal laser microscopy demonstrated a loss of peroxisomes in neuronal processes with abnormally phosphorylated tau protein, implicating impaired trafficking as the cause of altered peroxisomal distribution. Besides the original Braak staging, the study design allowed a direct correlation between the biochemical findings and the amount of neurofibrillary tangles (NFT) and neuritic plaques, quantified in adjacent tissue sections. Interestingly, the decrease in plasmalogens and the increase in VLCFA and peroxisomal volume density in neuronal somata all showed a stronger association with NFT than with neuritic plaques. These results indicate substantial peroxisome-related alterations in AD, which may contribute to the progression of AD pathology
Fungal enzyme sets for plant polysaccharide degradation
Enzymatic degradation of plant polysaccharides has many industrial applications, such as within the paper, food, and feed industry and for sustainable production of fuels and chemicals. Cellulose, hemicelluloses, and pectins are the main components of plant cell wall polysaccharides. These polysaccharides are often tightly packed, contain many different sugar residues, and are branched with a diversity of structures. To enable efficient degradation of these polysaccharides, fungi produce an extensive set of carbohydrate-active enzymes. The variety of the enzyme set differs between fungi and often corresponds to the requirements of its habitat. Carbohydrate-active enzymes can be organized in different families based on the amino acid sequence of the structurally related catalytic modules. Fungal enzymes involved in plant polysaccharide degradation are assigned to at least 35 glycoside hydrolase families, three carbohydrate esterase families and six polysaccharide lyase families. This mini-review will discuss the enzymes needed for complete degradation of plant polysaccharides and will give an overview of the latest developments concerning fungal carbohydrate-active enzymes and their corresponding families
Alien species in the ichthyofauna of northwestern part of the Azov Sea basin
There are nine alien species in the region of the study. The distribution and abundance of nonnative fish in the reservoirs of northwestern part of the Azov Sea basin depends on the scale of fishing industry
activities, the degree of transformation of hydroecosystems, and the water release into the rivers from irrigation canals. There are three groups of species registered according to the number indices in the water areas of the basin. The first is the species the findings of which are rare in the region; the second group comprises fish the number of which depends on fishing industry activities; and the third one embraces the species that are high in the number and their self-reproducing populations exist
Structures of the intermediates of Kok's photosynthetic water oxidation clock.
Inspired by the period-four oscillation in flash-induced oxygen evolution of photosystem II discovered by Joliot in 1969, Kok performed additional experiments and proposed a five-state kinetic model for photosynthetic oxygen evolution, known as Kok's S-state clock or cycle1,2. The model comprises four (meta)stable intermediates (S0, S1, S2 and S3) and one transient S4 state, which precedes dioxygen formation occurring in a concerted reaction from two water-derived oxygens bound at an oxo-bridged tetra manganese calcium (Mn4CaO5) cluster in the oxygen-evolving complex3-7. This reaction is coupled to the two-step reduction and protonation of the mobile plastoquinone QB at the acceptor side of PSII. Here, using serial femtosecond X-ray crystallography and simultaneous X-ray emission spectroscopy with multi-flash visible laser excitation at room temperature, we visualize all (meta)stable states of Kok's cycle as high-resolution structures (2.04-2.08 Å). In addition, we report structures of two transient states at 150 and 400 µs, revealing notable structural changes including the binding of one additional 'water', Ox, during the S2→S3 state transition. Our results suggest that one water ligand to calcium (W3) is directly involved in substrate delivery. The binding of the additional oxygen Ox in the S3 state between Ca and Mn1 supports O-O bond formation mechanisms involving O5 as one substrate, where Ox is either the other substrate oxygen or is perfectly positioned to refill the O5 position during O2 release. Thus, our results exclude peroxo-bond formation in the S3 state, and the nucleophilic attack of W3 onto W2 is unlikely