26 research outputs found

    Mutation of putative N-Linked Glycosylation Sites in Japanese encephalitis Virus Premembrane and Envelope proteins enhances humoral immunity in BALB/C mice after DNA vaccination

    Get PDF
    Swine are an important host of Japanese encephalitis virus (JEV). The two membrane glycoproteins of JEV, prM and E, each contain a potential N-linked glycosylation site, at positions N15 and N154, respectively. We constructed plasmids that contain the genes encoding wild-type prME (contain the signal of the prM, the prM, and the E coding regions) and three mutant prME proteins, in which the putative N-linked glycosylation sites are mutated individually or in combination, by site-directed mutagenesis. The recombinant plasmids were used as DNA vaccines in mice. Our results indicate that immunizing mice with DNA vaccines that contain the N154A mutation results in elevated levels of interleukin-4 secretion, induces the IgG1 antibody isotype, generates greater titers of anti-JEV antibodies, and shows complete protection against JEV challenge. We conclude that mutation of the putative N-glycosylation site N154 in the E protein of JEV significantly enhances the induced humoral immune response and suggest that this mutant should be further investigated as a potential DNA vaccine against JEV

    Influenza Inactive Virus Vaccine with the Fusion Peptide (rTα1- BP5) Enhances Protection Against Influenza Through Humoral and Cell-Mediated Immunity

    Get PDF
    Thymosin α1 (Tα1) and Bursopentin (BP5) are both immunopotentiators. To explore whether the thymosin α1-Bursopentin (rTα1-BP5) is an adjuvant or not, we cloned the gene of Tα1-BP5 and provided evidence that the gene of Tα1-BP5 in a recombinant prokaryotic expression plasmid was successfully expressed in Escherichia coli BL21. To evaluate the immune adjuvant properties of rTα1-BP5, chickens were immunized with rTα1-BP5 combined with H9N2 avian influenza whole-inactivated virus (WIV). The titers of HI antibody, antigen-specific antibodies, Avian influenza virus (AIV)-neutralizing antibodies, levels of Th1-type cytokines (gamma interferon (IFN-γ)) and Th2-type cytokines (interleukin 4 (IL-4)), and lymphocyte proliferation responses were determined. We found that rTα1-BP5 enhanced HI antibody and antigen-specific immunoglobulin G (IgG) antibodies titers, increased the level of AIV-neutralizing antibodies, induced the secretion of Th1- and Th2-type cytokines, and promoted the proliferation of T and B lymphocyte. Furthermore, virus challenge experiments confirmed that rTα1-BP5 contributed to the inhibition replication of the virus (H9N2 AIV (A/chicken/Jiangsu/NJ07/05) from chicken lungs. Altogether, these findings suggest that rTα1-BP5 is a novel adjuvant suitable for H9N2 avian influenza vaccine

    The Meq oncoprotein of Marek's disease virus interacts with p53 and inhibits its transcriptional and apoptotic activities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Marek's disease virus (MDV) is an oncogenic herpesvirus, which causes malignant lymphoma in chickens. The Meq protein of MDV, which is expressed abundantly in MDV-infected cells and in Marek's disease (MD) tumor cells, functions as a transcriptional activator and has been proposed to play an important role in oncogenic transformation. Preliminary studies demonstrated that Meq is able to bind p53 <it>in vitro</it>, as demonstrated using a protein-binding assay. This observation prompted us to examine whether the interaction between Meq and p53 occurs in cells, and to investigate the biological significance of this interaction.</p> <p>Results</p> <p>We confirmed first that Meq interacted directly with p53 using a yeast two-hybrid assay and an immunoprecipitation assay, and we investigated the biological significance of this interaction subsequently. Exogenous expression of Meq resulted in the inhibition of p53-mediated transcriptional activity and apoptosis, as analyzed using a p53 luciferase reporter assay and a TUNEL assay. The inhibitory effect of Meq on transcriptional activity mediated by p53 was dependent on the physical interaction between these two proteins, because a Meq deletion mutant that lacked the p53-binding region lost the ability to inhibit p53-mediated transcriptional activity and apoptosis. The Meq variants L-Meq and S-Meq, but not VS-Meq and ∆Meq, which were expressed in MD tumor cells and MDV-infected cells, exerted an inhibitory effect on p53 transcriptional activity. In addition, ∆Meq was found to act as a negative regulator of Meq.</p> <p>Conclusions</p> <p>The Meq oncoprotein interacts directly with p53 and inhibits p53-mediated transcriptional activity and apoptosis. These findings provide valuable insight into the molecular basis for the function of Meq in MDV oncogenesis.</p

    Multiple linear epitopes (B-cell, CTL and Th) of JEV expressed in recombinant MVA as multiple epitope vaccine induces a protective immune response

    Get PDF
    Epitope-based vaccination might play an important role in the protective immunity against Japanese encephalitis virus (JEV) infection. The purpose of the study is to evaluate the immune characteristics of recombinant MVA carrying multi-epitope gene of JEV (rMVA-mep). The synthetic gene containing critical epitopes (B-cell, CTL and Th) of JEV was cloned into the eukaryotic expression vector pGEM-K1L, and the rMVA-mep was prepared. BALB/c mice were immunized with different dosages of purified rMVA-mep and the immune responses were determined in the form of protective response against JEV, antibodies titers (IgG1 and IgG2a), spleen cell lymphocyte proliferation, and the levels of interferon-γ and interleukin-4 cytokines. The results showed that live rMVA-mep elicited strongly immune responses in dose-dependent manner, and the highest level of immune responses was observed from the groups immunized with 107 TCID50 rMVA-mep among the experimental three concentrations. There were almost no difference of cytokines and neutralizing antibody titers among 107 TCID50 rMVA-mep, recombinant ED3 and inactivated JEV vaccine. It was noteworthy that rMVA-mep vaccination potentiates the Th1 and Th2-type immune responses in dose-dependent manner, and was sufficient to protect the mice survival against lethal JEV challenge. These findings demonstrated that rMVA-mep can produce adequate humoral and cellular immune responses, and protection in mice, which suggested that rMVA-mep might be an attractive candidate vaccine for preventing JEV infection

    Epstein–Barr virus-associated inflammatory pseudotumor of the spleen: report of two cases and review of the literature

    Get PDF
    We report two rare examples of Epstein–Barr virus (EBV)-associated inflammatory pseudotumor of the spleen. One patient presented with night sweats, abdominal pain, and weight loss and was found to have a splenic mass on CT scan suspected of lymphoma. The splenic mass in second patient was found incidentally at the time of work up for kidney stones. The pathologic examination of these splenectomy specimens showed similar histologic features. However, the spindle cells were composed of EBV-infected follicular dendritic cells in one case whereas the second case lacked significant follicular dendritic cell proliferation and showed only focal EBV-infected cells suggesting that these proliferations are heterogenous in nature

    A Diffusion Model for Multi-Layered Metasurface Unit Cell Synthesis

    No full text
    A deep learning approach based on a diffusion model is proposed to yield metasurface unit cell designs. This method takes desired two-port scattering parameters along with the frequency of operation in an attempt to synthesize three-layered metasurface unit cells. The core of this approach lies in casting the three-layered unit cell synthesis process as conditional three-channel binary image synthesis. The conditions are governed by the desired scattering parameters at a given frequency whereas the binary nature implies the presence and absence of metallic traces. Once synthesized, these unit cells are placed beside each other, without any further tuning, to form the final metasurface. The performance of the whole metasurface, for three different design scenarios, is then tested against full-wave simulation and/or experimental data

    Analysis on one-off subsidy for renewable energy projects based on time value of money

    No full text
    Due to the incentive policies of governments, renewable energy plays an increasingly important role in the global energy supply system. Among the subsidy schemes, the one-off subsidy is mainly applied in the projects with a long investment period where the time value of money cannot be ignored due to the long payback period. In this article, a microeconomic model of enterprises with a discount factor is established. The impact of the one-off subsidy by the government is discussed in different periods. The results show that only when the investment period is long enough, the government would give the enterprise one-off subsidy and the given subsidy is positively correlated with the investment period. Besides, the enterprise is more willing to invest in the project when getting close to the end of the investment period and the subsidy increases with the growth of capital-output elasticity. This article analyzes the optimal period of giving the one-off subsidy under the condition of different internal rates of return (IRRs). Based on the extended framework of subsidy analysis by game theory, it is found that if IRR of the enterprise is larger than that of the government, the subsidy is suggested to be given at the beginning of the project

    A Deep Learning-Based Approach to Design Metasurfaces From Desired Far-Field Specifications

    No full text
    A deep learning neural network model in conjunction with a method to incorporate auxiliary surface waves is developed for the macroscopic design of transmitting metasurfaces. The main input to the neural network model is the user-defined desired far-field specifications. This network is used to calculate the required tangential electromagnetic fields on the metasurface. These fields will then be augmented by incorporating auxiliary surface waves along the metasurface for power redistribution to satisfy the requirement for having lossless and passive metasurfaces. The designs will then be evaluated using full-wave simulations of metasurfaces with three-layer unit cell topology in both 2D and 3D scenarios
    corecore