10 research outputs found
Root dynamics and survival in a nutrient-poor and species-rich woodland under a drying climate
Background and aims In Australia’s Mediterranean hyperdiverse vegetation, species that produce cluster roots to mobilise poorly-available nutrients (e.g. Banksia spp.) are an important functional and structural component. Cluster roots are only active during the wet season, indicating a strong dependence on suitable surface soil moisture conditions. Winter rainfall in this region is declining due to global climate change, with a delayed commencement of rains and a decline in precipitation. It is unknown how lower soil moisture levels will affect the root dynamics of these globally-significant plant communities. Methods We determined the root dynamics and root lifespan with minirhizotrons with or without irrigation to simulate reduced rainfall scenarios. Results We found a major effect of irrigation on the early production (0.24 m m-2 d-1 increase), occurrence (97% increase) of cluster roots and only slight effects on lifespan (~10 days less) of all root types. With irrigation, the resultant greater soil moisture levels increased the deployment of cluster roots. Apart from cluster roots, the dynamics of other roots did not decline at lower soil moisture levels, suggesting that this system shows some resilience to decreased rainfall. Conclusions Future research should focus on assessing if climate-altered cluster-root activity may be promoting compositional shifts in plant communities with additional restraining effects on root trait diversity
Ecology and conservation status of endemic freshwater crabs in Lake Tanganyika, Africa
Sedimentation resulting from riparian deforestation has a wide range of detrimental effects on aquatic biodiversity, but predicting the full consequences of such disturbances requires an understanding of the ecosystem’s key functional components. We investigated the ecology and response to sedimentation of the diverse, endemic freshwater crabs of Lake Tanganyika, which may occupy important positions in littoral foodwebs. Our surveys revealed crab distribution patterns to be patchy, and that crabs can be locally abundant (0-28 individuals m−2). Crab densities decreased with depth and the dry mass of crab assemblages ranged from 0.0 to 117.7 g m−2. Comparisons among sites revealed significant effects of sedimentation on crab assemblage evenness, but provided no evidence that sedimentation has altered densities, incidence or species richness. The resilience of crabs to sedimentation might be related to their intraspecific dietary breadth. Stable isotope data (δ13C and δ15N) from crabs and their potential food resources indicated differences in trophic roles among endemic crab species. Overall, crabs occupy higher trophic positions than most other invertebrates, and they draw upon both benthic and planktonic energy pathways. The high biomass and top-predator status of some crab species suggests the potential for cascading effects on organisms lower in the food web
Biotic, abiotic, and management controls on the net ecosystem CO2 exchange of European mountain grassland ecosystems
The net ecosystem carbon dioxide (CO2) exchange (NEE) of nine European mountain grassland ecosystems was measured during 2002–2004 using the eddy covariance method. Overall, the availability of photosynthetically active radiation (PPFD) was the single most important abiotic influence factor for NEE. Its role changed markedly during the course of the season, PPFD being a better predictor for NEE during periods favorable for CO2 uptake, which was spring and autumn for the sites characterized by summer droughts (southern sites) and (peak) summer for the Alpine and northern study sites. This general pattern was interrupted by grassland management practices, that is, mowing and grazing, when the variability in NEE explained by PPFD decreased in concert with the amount of aboveground biomass (BMag). Temperature was the abiotic influence factor that explained most of the variability in ecosystem respiration at the Alpine and northern study sites, but not at the southern sites characterized by a pronounced summer drought, where soil water availability and the amount of aboveground biomass were more or equally important. The amount of assimilating plant area was the single most important biotic variable determining the maximum ecosystem carbon uptake potential, that is, the NEE at saturating PPFD. Good correspondence, in terms of the magnitude of NEE, was observed with many (semi-) natural grasslands around the world, but not with grasslands sown on fertile soils in lowland locations, which exhibited higher maximum carbon gains at lower respiratory costs. It is concluded that, through triggering rapid changes in the amount and area of the aboveground plant matter, the timing and frequency of land management practices is crucial for the short-term sensitivity of the NEE of the investigated mountain grassland ecosystems to climatic drivers