7 research outputs found

    An ecological future for weed science to sustain crop production and the environment. A review

    Get PDF
    Sustainable strategies for managing weeds are critical to meeting agriculture's potential to feed the world's population while conserving the ecosystems and biodiversity on which we depend. The dominant paradigm of weed management in developed countries is currently founded on the two principal tools of herbicides and tillage to remove weeds. However, evidence of negative environmental impacts from both tools is growing, and herbicide resistance is increasingly prevalent. These challenges emerge from a lack of attention to how weeds interact with and are regulated by the agroecosystem as a whole. Novel technological tools proposed for weed control, such as new herbicides, gene editing, and seed destructors, do not address these systemic challenges and thus are unlikely to provide truly sustainable solutions. Combining multiple tools and techniques in an Integrated Weed Management strategy is a step forward, but many integrated strategies still remain overly reliant on too few tools. In contrast, advances in weed ecology are revealing a wealth of options to manage weedsat the agroecosystem levelthat, rather than aiming to eradicate weeds, act to regulate populations to limit their negative impacts while conserving diversity. Here, we review the current state of knowledge in weed ecology and identify how this can be translated into practical weed management. The major points are the following: (1) the diversity and type of crops, management actions and limiting resources can be manipulated to limit weed competitiveness while promoting weed diversity; (2) in contrast to technological tools, ecological approaches to weed management tend to be synergistic with other agroecosystem functions; and (3) there are many existing practices compatible with this approach that could be integrated into current systems, alongside new options to explore. Overall, this review demonstrates that integrating systems-level ecological thinking into agronomic decision-making offers the best route to achieving sustainable weed management

    Plk1 regulates contraction of postmitotic smooth muscle cells and is required for vascular homeostasis

    No full text
    Polo-like kinase 1 (PLK1), an essential regulator of cell division, is currently undergoing clinical evaluation as a target for cancer therapy. We report an unexpected function of Plk1 in sustaining cardiovascular homeostasis. Plk1 haploinsufficiency in mice did not induce obvious cell proliferation defects but did result in arterial structural alterations, which frequently led to aortic rupture and death. Specific ablation of Plk1 in vascular smooth muscle cells (VSMCs) led to reduced arterial elasticity, hypotension, and an impaired arterial response to angiotensin II in vivo. Mechanistically, we found that Plk1 regulated angiotensin II-dependent activation of RhoA and actomyosin dynamics in VSMCs in a mitosis-independent manner. This regulation depended on Plk1 kinase activity, and the administration of small-molecule Plk1 inhibitors to angiotensin II-treated mice led to reduced arterial fitness and an elevated risk of aneurysm and aortic rupture. We thus conclude that a partial reduction of Plk1 activity that does not block cell division can nevertheless impair aortic homeostasis. Our findings have potentially important implications for current approaches aimed at PLK1 inhibition for cancer therapy.This work-was supported by the Marie Curie activities of the European Commission (Oncotrain program; fellowship to P.W), the Spanish Ministry of Economy and Competitiveness (MINECO; fellowship to A.G.-L.), the CENIT AMIT Project "Advanced Molecular Imaging Technologies" (TEC2008-06715-C02-1, RD07/0014/2009 to F.M.), the Red de investigacion Cardiovascular (RIC), cofunded by FEDER (grant RD12/004240022 to J.M.R.; grant RD12/0042/0056 to L.J.J.-B), Fundacio La Marato TV3 (grant 20151331 to J.M.R.), the Castilla-Leon Autonomous Government (BIO/SA01/15, CS049U16 to X.R.B.), the Solorzano and Ramon Areces Foundations (to X.R.B.), MINECO (grants RD12/0036/0002 and SAF2015-64556-R to X.R.B.; SAF2015-63633-R to J.M.R.; and SAF2015-69920-R to M.M.), Consolider-Ingenio 2010 Programme (grant SAF2014-57791-REDC to M.M.), Red Tematica CellSYS (grant BFU2014-52125-REDT to M.M.), Comunidad de Madrid (OncoCycle Programme; grant S2010/BMD-2470 to M.M.), Worldwide Cancer Research (grants 14-1248 to X.R.B., and 15-0278 to M.M.) and the MitoSys project (European Union Seventh Framework Programme; grant HEALTH-F5-2010-241548 to M.M.). CNIC is supported by MINECO and the Pro-CNIC Foundation. CNIO and CNIC are Severo Ochoa Centers of Excellence (MINECO awards SEV-2015-0510 and SEV-2015-0505, respectively).S

    Sieving through gut models of colonization resistance

    No full text

    A global dataset for crop production under conventional tillage and no tillage systems

    No full text
    corecore