10 research outputs found

    Gender, sex hormones and pulmonary hypertension

    Get PDF
    Most subtypes of pulmonary arterial hypertension (PAH) are characterized by a greater susceptibility to disease among females, although females with PAH appear to live longer after diagnosis. While this “estrogen paradoxȍ of enhanced female survival despite increased female susceptibility remains a mystery, recent progress has begun to shed light upon the interplay of sex hormones, the pathogenesis of pulmonary hypertension, and the right ventricular response to stress. For example, emerging data in humans and experimental models suggest that estrogens or differential sex hormone metabolism may modify disease risk among susceptible subjects, and that estrogens may interact with additional local factors such as serotonin to enhance the potentially damaging chronic effects of estrogens on the pulmonary vasculature. Regardless, it remains unclear why not all estrogenic compounds behave equally, nor why estrogens appear to be protective in certain settings but detrimental in others. The contribution of androgens and other compounds, such as dehydroepiandrosterone, to pathogenesis and possibly treatment must be considered as well. In this review, we will discuss the recent understandings on how estrogens, estrogen metabolism, dehydroepiandrosterone, and additional susceptibility factors may all contribute to the pathogenesis or potentially to the treatment of pulmonary hypertension, by evaluating current human, cell-based, and experimental model data

    The role of sex in the pathophysiology of pulmonary hypertension

    Get PDF
    Pulmonary arterial hypertension (PAH) is a progressive disease characterised by increased pulmonary vascular resistance and pulmonary artery remodelling as result of increased vascular tone and vascular cell proliferation, respectively. Eventually, this leads to right heart failure. Heritable PAH is caused by a mutation in the bone morphogenetic protein receptor-II (BMPR-II). Female susceptibility to PAH has been known for some time, and most recent figures show a female-to-male ratio of 4:1. Variations in the female sex hormone estrogen and estrogen metabolism modify FPAH risk, and penetrance of the disease in BMPR-II mutation carriers is increased in females. Several lines of evidence point towards estrogen being pathogenic in the pulmonary circulation, and thus increasing the risk of females developing PAH. Recent studies have also suggested that estrogen metabolism may be crucial in the development and progression of PAH with studies indicating that downstream metabolites such as 16α-hydroxyestrone are upregulated in several forms of experimental pulmonary hypertension (PH) and can cause pulmonary artery smooth muscle cell proliferation and subsequent vascular remodelling. Conversely, other estrogen metabolites such as 2-methoxyestradiol have been shown to be protective in the context of PAH. Estrogen may also upregulate the signalling pathways of other key mediators of PAH such as serotonin

    Impact of Pituitary–Gonadal Axis Hormones on Pulmonary Arterial Hypertension in Men

    No full text

    Estrogen Rescues Preexisting Severe Pulmonary Hypertension in Rats

    No full text
    Rationale: Pulmonary hypertension (PH) is characterized by progressive increase in pulmonary artery pressure leading to right ventricular (RV) hypertrophy, RV failure, and death. Current treatments only temporarily reduce severity of the disease, and an ideal therapy is still lacking. Objectives: Estrogen pretreatment has been shown to attenuate development of PH. Because PH is not often diagnosed early, we examined if estrogen can rescue preexisting advanced PH. Methods: PH was induced in male rats with monocrotaline (60 mg/kg). At Day 21, rats were either treated with 17-β estradiol or estrogen (E2, 42.5 μg/kg/d), estrogen receptor-β agonist (diarylpropionitrile, 850 μg/kg/d), or estrogen receptor α-agonist (4,4',4"-[4-Propyl-(1H)-pyrazole-1,3,5-triyl] trisphenol, 850 μg/kg/d) for 10 days or left untreated to develop RV failure. Serial echocardiography, cardiac catheterization, immunohistochemistry, Western blot, and real-time polymerase chain reaction were performed. Measurements and Main Results: Estrogen therapy prevented progression of PH to RV failure and restored lung and RV structure and function. This restoration was maintained even after removal of estrogen at Day 30, resulting in 100% survival at Day 42. Estradiol treatment restored the loss of blood vessels in the lungs and RV. In the presence of angiogenesis inhibitor TNP-470 (30 mg/kg) or estrogen receptor-β antagonist (PHTPP, 850 μg/kg/d), estrogen failed to rescue PH. Estrogen receptor-β selective agonist was as effective as estrogen in rescuing PH. Conclusions: Estrogen rescues preexisting severe PH in rats by restoring lung and RV structure and function that are maintained even after removal of estrogen. Estrogen-induced rescue of PH is associated with stimulation of cardiopulmonary neoangiogenesis, suppression of inflammation, fibrosis, and RV hypertrophy. Furthermore, estrogen rescue is likely mediated through estrogen receptor-β

    Biochemical and pharmacological role of A1adenosine receptors and their modulation as novel therapeutic strategy

    No full text
    Adenosine, the purine nucleoside, mediates its effects through activation of four G-protein coupled adenosine receptors (ARs) named as A1, A2A, A2Band A3. In particular, A1ARs are distributed through the body, primarily inhibitory in the regulation of adenylyl cyclase activity and able to reduce the cyclic AMP levels. Considerable advances have been made in the pharmacological and molecular characterization of A1ARs, which had been proposed as targets for the discovery and drug design of antagonists, agonists and allosteric enhancers. Several lines of evidence indicate that adenosine interacting with A1ARs may be an endogenous protective agent in the human body since it prevents the damage caused by various pathological conditions, such as in ischemia/hypoxia, epileptic seizures, excitotoxic neuronal injury and cardiac arrhythmias in cardiovascular system. It has also been reported that one of the most promising targets for the development of new anxiolytic drugs could be A1ARs, and that their activation may reduce pain signaling in the spinal cord. A1AR antagonists induce diuresis and natriuresis in various experimental models, mediating the inhibition of A1ARs in the proximal tubule which is primarily responsible for reabsorption and fluid uptake. In addition, the results of various studies indicate that adenosine is present within pancreatic islets and is implicated through A1ARs in the regulation of insulin secretion and in glucose concentrations. In the present paper it will become apparent that A1ARs could be implicated in the pharmacological treatment of several pathologies with an important influence on human health
    corecore