17 research outputs found

    Exploring the Dynamic Range of the Kinetic Exclusion Assay in Characterizing Antigen-Antibody Interactions

    Get PDF
    Therapeutic antibodies are often engineered or selected to have high on-target binding affinities that can be challenging to determine precisely by most biophysical methods. Here, we explore the dynamic range of the kinetic exclusion assay (KinExA) by exploiting the interactions of an anti-DKK antibody with a panel of DKK antigens as a model system. By tailoring the KinExA to each studied antigen, we obtained apparent equilibrium dissociation constants (KD values) spanning six orders of magnitude, from approximately 100 fM to 100 nM. Using a previously calibrated antibody concentration and working in a suitable concentration range, we show that a single experiment can yield accurate and precise values for both the apparent KD and the apparent active concentration of the antigen, thereby increasing the information content of an assay and decreasing sample consumption. Orthogonal measurements obtained on Biacore and Octet label-free biosensor platforms further validated our KinExA-derived affinity and active concentration determinations. We obtained excellent agreement in the apparent affinities obtained across platforms and within the KinExA method irrespective of the assay orientation employed or the purity of the recombinant or native antigens

    Tracking Membrane Protein Association in Model Membranes

    Get PDF
    Membrane proteins are essential in the exchange processes of cells. In spite of great breakthrough in soluble proteins studies, membrane proteins structures, functions and interactions are still a challenge because of the difficulties related to their hydrophobic properties. Most of the experiments are performed with detergent-solubilized membrane proteins. However widely used micellar systems are far from the biological two-dimensions membrane. The development of new biomimetic membrane systems is fundamental to tackle this issue

    Structure and Novel Functional Mechanism of Drosophila SNF in Sex-Lethal Splicing

    Get PDF
    Sans-fille (SNF) is the Drosophila homologue of mammalian general splicing factors U1A and U2B″, and it is essential in Drosophila sex determination. We found that, besides its ability to bind U1 snRNA, SNF can also bind polyuridine RNA tracts flanking the male-specific exon of the master switch gene Sex-lethal (Sxl) pre-mRNA specifically, similar to Sex-lethal protein (SXL). The polyuridine RNA binding enables SNF directly inhibit Sxl exon 3 splicing, as the dominant negative mutant SNF1621 binds U1 snRNA but not polyuridine RNA. Unlike U1A, both RNA recognition motifs (RRMs) of SNF can recognize polyuridine RNA tracts independently, even though SNF and U1A share very high sequence identity and overall structure similarity. As SNF RRM1 tends to self-associate on the opposite side of the RNA binding surface, it is possible for SNF to bridge the formation of super-complexes between two introns flanking Sxl exon 3 or between a intron and U1 snRNP, which serves the molecular basis for SNF to directly regulate Sxl splicing. Taken together, a new functional model for SNF in Drosophila sex determination is proposed. The key of the new model is that SXL and SNF function similarly in promoting Sxl male-specific exon skipping with SNF being an auxiliary or backup to SXL, and it is the combined dose of SXL and SNF governs Drosophila sex determination

    Apoptosis-linked changes in the phosphorylation status and subcellular localization of the spliceosomal autoantigen U1-70K.

    No full text
    Contains fulltext : 69873.pdf (publisher's version ) (Closed access)Apoptosis consists of highly regulated pathways involving post-translational modifications and cleavage of proteins leading to sequential inactivation of the main cellular processes. Here, we focused on the apoptotic processing of one of the essential components of the mRNA splicing machinery, the U1-70K snRNP protein. We found that at an early stage of apoptosis, before the cleavage of the C-terminal part of the protein by caspase-3, the basal phosphorylation of the Ser140 residue located within the RNA recognition motif, increases very significantly. A caspase-dependent, PP1-mediated dephosphorylation of other serine residues takes place in a subset of U1-70K proteins. The U1-70K protein phosphorylated at Ser140 is clustered in heterogeneous ectopic RNP-derived structures, which are finally extruded in apoptotic bodies. The elaborate processing of the spliceosomal U1-70K protein we identified might play an important role in the regulated breakdown of the mRNA splicing machinery during early apoptosis. In addition, these specific changes in the phosphorylation/dephosphorylation balance and the subcellular localization of the U1-70K protein might explain why the region encompassing the Ser140 residue becomes a central autoantigen during the autoimmune disease systemic lupus erythematosus
    corecore