85 research outputs found

    Diastereomeric Cyclopentane-Based Maltosides (CPMs) as tools for membrane protein study

    Get PDF
    Amphiphilic agents, called detergents, are invaluable tools for studying membrane proteins. However, membrane proteins encapsulated by conventional head-to-tail detergents tend to denature or aggregate, necessitating the development of structurally distinct molecules with improved efficacy. Here, a novel class of diastereomeric detergents with a cyclopentane core unit, designated cyclopentane-based maltosides (CPMs), were prepared and evaluated for their ability to solubilize and stabilize several model membrane proteins. A couple of CPMs displayed enhanced behavior compared with the benchmark conventional detergent, n-dodecyl-β-d-maltoside (DDM), for all the tested membrane proteins including two G-protein-coupled receptors (GPCRs). Furthermore, CPM-C12 was notable for its ability to confer enhanced membrane protein stability compared with the previously developed conformationally rigid NBMs [J. Am. Chem. Soc.2017, 139, 3072] and LMNG. The effect of the individual CPMs on protein stability varied depending on both the detergent configuration (cis/trans) and alkyl chain length, allowing us draw conclusions on the detergent structure–property–efficacy relationship. Thus, this study not only provides novel detergent tools useful for membrane protein research but also reports on structural features of the detergents critical for detergent efficacy in stabilizing membrane proteins

    Micropropagation and conservation of selected endangered anticancer medicinal plants from the Western Ghats of India

    Get PDF
    Globally, cancer is a constant battle which severely affects the human population. The major limitations of the anticancer drugs are the deleterious side effects on the quality of life. Plants play a vital role in curing many diseases with minimal or no side effects. Phytocompounds derived from various medicinal plants serve as the best source of drugs to treat cancer. The global demand for phytomedicines is mostly reached by the medicinal herbs from the tropical nations of the world even though many plant species are threatened with extinction. India is one of the mega diverse countries of the world due to its ecological habitats, latitudinal variation, and diverse climatic range. Western Ghats of India is one of the most important depositories of endemic herbs. It is found along the stretch of south western part of India and constitutes rain forest with more than 4000 diverse medicinal plant species. In recent times, many of these therapeutically valued herbs have become endangered and are being included under the red-listed plant category in this region. Due to a sharp rise in the demand for plant-based products, this rich collection is diminishing at an alarming rate that eventually triggered dangerous to biodiversity. Thus, conservation of the endangered medicinal plants has become a matter of importance. The conservation by using only in situ approaches may not be sufficient enough to safeguard such a huge bio-resource of endangered medicinal plants. Hence, the use of biotechnological methods would be vital to complement the ex vitro protection programs and help to reestablish endangered plant species. In this backdrop, the key tools of biotechnology that could assist plant conservation were developed in terms of in vitro regeneration, seed banking, DNA storage, pollen storage, germplasm storage, gene bank (field gene banking), tissue bank, and cryopreservation. In this chapter, an attempt has been made to critically review major endangered medicinal plants that possess anticancer compounds and their conservation aspects by integrating various biotechnological tool

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    ADAMIS: a database for medical information systems

    No full text
    This paper describes the design and implementation of ADAMIS (‘A database for medical information systems’). ADAMIS is a relational database management system for a general hospital environment. Apart from the usual database (DB) facilities of data definition and data manipulation, ADAMIS supports a query language called the ‘simplified medical query language’ (SMQL) which is completely end-user oriented and highly non-procedural. Other features of ADAMIS include provision of facilities for statistics collection and report generation. ADAMIS also provides adequate security and integrity features and has been designed mainly for use on interactive terminals

    5S-rRNA genes in rice embryos

    No full text
    The 5S-rRNA from the ungerminated and 48-h-germinated rice embryos differs from that of wheat, rye and maize by two nucleotides. The 48-h-germinated embryos contain another species of 5S-rRNA which differs by 3 nucleotides from the ungerminated embryos, thereby demonstrating the expression of two 5S-rRNA genes during germination. The 5S-rRNA genes are present in tandem repeats of a 0.3-kb sequence with some length heterogeneity in the rice genome. The 5S-rRNA gene that was sequenced is identical to that of wheat and maize, except for two nucleotides, C and T, which are interchanged at positions 107 and 117. The insert of the continuous 5S-rRNA gene in pBR322 was transcribed in vitro much more efficiently than was the discontinuous gene. There was no homology between the 184-bp spacer sequence of 5S-rRNA genes in rice and other systems except for the presence of an oligo(T) transcription terminator sequence

    Rationally engineered tandem facial amphiphiles for improved membrane protein stabilization efficacy

    Get PDF
    A new family of tandem facial glucosides/maltosides (TFGs/TFMs) for membrane protein manipulation was prepared. The best detergent varied depending on the hydrophobic thickness of the target protein, but ether‐based TFMs (TFM‐C0E, TFM‐C3E, and TFM‐C5E) were notable for their ability to confer higher membrane protein stability than the previously developed amide‐based TFA‐1 (P. S. Chae, K. Gotfryd, J. Pacyna, L. J. W. Miercke, S. G. F. Rasmussen, R. A. Robbins, R. R. Rana, C. J. Loland, B. Kobilka, R. Stroud, B. Byrne, U. Gether, S. H. Gellman, J. Am. Chem. Soc. 2010, 132, 16750–16752). Thus, this study not only introduces novel agents with the potential to be used in membrane protein research but also highlights the importance of both the hydrophobic length and linker functionality of the detergent in stabilizing membrane proteins

    Butane-1,2,3,4-tetraol-based amphiphilic stereoisomers for membrane protein study: importance of chirality in the linker region

    Get PDF
    Amphiphile selection is a crucial step in membrane protein structural and functional study. As conventional detergents have limited scope and utility, novel agents with enhanced efficacy need to be developed. Although a large number of novel agents have been reported, so far there has been no systematically designed comparative study of the protein stabilization efficacy of stereo-isomeric amphiphiles. Here we designed and prepared a novel class of stereo-isomeric amphiphiles, designated butane-1,2,3,4-tetraol-based maltosides (BTMs). These stereoisomers showed markedly different behaviour for most of the targeted membrane proteins depending on the chirality of the linker region. These findings indicate an important role for detergent stereochemistry in membrane protein stabilization. In addition, we generally observed enhanced detergent efficacy with increasing alkyl chain length, reinforcing the importance of the balance between hydrophobicity and hydrophilicity in detergent design. The stereo-isomeric difference in detergent efficacy observed provides an important design principle for the development of novel amphiphiles for membrane protein manipulation

    A class of rigid linker-bearing glucosides for membrane protein structural study

    Get PDF
    Membrane proteins are amphipathic bio-macromolecules incompatible with the polar environments of aqueous media. Conventional detergents encapsulate the hydrophobic surfaces of membrane proteins allowing them to exist in aqueous solution. Membrane proteins stabilized by detergent micelles are used for structural and functional analysis. Despite the availability of a large number of detergents, only a few agents are sufficiently effective at maintaining the integrity of membrane proteins to allow successful crystallization. In the present study, we describe a novel class of synthetic amphiphiles with a branched tail group and a triglucoside head group. These head and tail groups were connected via an amide or ether linkage by using a tris(hydroxylmethyl)aminomethane (TRIS) or neopentyl glycol (NPG) linker to produce TRIS-derived triglucosides (TDTs) and NPG-derived triglucosides (NDTs), respectively. Members of this class conferred enhanced stability on target membrane proteins compared to conventional detergents. Because of straightforward synthesis of the novel agents and their favourable effects on a range of membrane proteins, these agents should be of wide applicability to membrane protein science
    corecore