26 research outputs found
Whole organisms or pure compounds? entourage effect versus drug specificity
As the therapeutic use of sacred plants and fungi becomes increasingly accepted by Western medicine, a tug of war has been taking place between those who advocate the traditional consumption of whole organisms and those who defend exclusively the utilization of purified compounds. The attempt to reduce organisms to single active principles is challenged by the sheer complexity of traditional medicine. Ayahuasca, for example, is a concoction of at least two plant species containing multiple psychoactive substances with complex interactions. Similarly, cannabis contains dozens of psychoactive substances whose specific combinations in different strains correspond to different types of therapeutic and cognitive effects. The “entourage effect” refers to the synergistic effects of the multiple compounds present in whole organisms, which may potentiate clinical efficacy while attenuating side effects. In opposition to this view, mainstream pharmacology is adamant about the need to use purified substances, presumably more specific and safe. In this chapter, I will review the evidence on both sides to discuss the scientific, economic, and political implications of this controversy. The evidence indicates that it is time to embrace the therapeutic complexity of psychedelics.2019-07-3
Heavy metal pollution in Sub-Saharan Africa and possible implications in cancer epidemiology
Please help populate SUNScholar with the full text of SU research output. Also - should you need this item urgently, please send us the details and we will try to get hold of the full text as quick possible. E-mail to [email protected]. Thank you.Journal Articles (subsidised)Geneeskunde en GesondheidswetenskappeFarmakologi
Comparative evaluation of warfarin utilisation in two primary healthcare clinics in the Cape Town area
Please help populate SUNScholar with the full text of SU research output. Also - should you need this item urgently, please send us the details and we will try to get hold of the full text as quick possible. E-mail to [email protected]. Thank you.Journal Articles (subsidised)Geneeskunde en GesondheidswetenskappeFarmakologi
The Potential of Sutherlandia frutescens for Herb-Drug Interaction
Please help populate SUNScholar with the full text of SU research output. Also - should you need this item urgently, please send us the details and we will try to get hold of the full text as quick possible. E-mail to [email protected]. Thank you.Journal Articles (subsidised)Geneeskunde en GesondheidswetenskappeGeneeskundige Mikrobiologi
Pathway-specific inhibition of primaquine metabolism by chloroquine/quinine
BACKGROUND: There has been some evidence to suggest that the addition of chloroquine (CQ) or quinine (QN) to 8-aminoquinoline (8-AQ) treatment regimens may increase the therapeutic efficacy of the 8-AQ and simultaneously mitigate against its haemolytic toxicity. However, both CQ and QN are considered effective, although perhaps moderate inhibitors of CYP2D6, an enzyme now regarded as necessary for primaquine (PQ) pharmacologic activity. An understanding of the influence of CQ and QN on the metabolism of PQ may shed light on the potential mechanisms of the beneficial interaction. METHODS: Differential metabolism of PQ enantiomers by recombinant human CYP2D6, monoamine oxidase A (MAO), and cryopreserved human hepatocytes in the presence/absence of CQ and QN. RESULTS: Both CQ and QN significantly inhibited the activity of CYP2D6. PQ depletion by MAO and human hepatocytes was not affected significantly by the presence of CQ and QN. CYP2D6-mediated hydroxylation was largely suppressed by both CQ and QN. The formation of the primary deaminated metabolites, including carboxyprimaquine (CPQ) and cyclized side chain derivative from the aldehyde (m/z 241), was not sensitive to the presence of CQ and QN. However, the appearance of the glucuronides of CPQ and PQ alcohol were significantly suppressed. CQ and QN also inhibited the appearance of the m/z 257 metabolite with a similar pattern, suggesting that it may be derived from the CPQ conjugate. The apparent quinone-imine of CPQ (m/z 289) was only partially suppressed by both QN and CQ, but with a differential pattern of inhibition for the two drugs. The m/z 274 (quinone-imine of a ring-hydroxylated PQ metabolite) and m/z 422 (an apparent glucose conjugate of PQ) metabolites in hepatocytes were strongly suppressed by both QN and CQ, perhaps a reflection of the 2D6 inhibition by these drugs. The formation of the carbamoyl glucuronide of PQ (m/z 480) was not affected by CQ/QN. CONCLUSION: The metabolite-specific interactions in the current studies seem at variance with earlier reports of the dependence of PQ on CYP2D6 metabolism, and enhanced PQ anti-malarial activity/reduced toxicity in the presence of CQ/QN. These results suggest a complex picture in which CQ/QN may shift metabolite pathway balances towards a profile that retains efficacy, while reducing the formation or availability of toxic metabolites to erythrocytes. Alternatively, these drugs may alter transport or distribution of PQ metabolites in a fashion that reduces toxicity while maintaining efficacy against the parasite