17 research outputs found

    Changes in the Diversity of Soil Arbuscular Mycorrhizal Fungi after Cultivation for Biofuel Production in a Guantanamo (Cuba) Tropical System

    Get PDF
    The arbuscular mycorrhizal fungi (AMF) are a key, integral component of the stability, sustainability and functioning of ecosystems. In this study, we characterised the AMF biodiversity in a native vegetation soil and in a soil cultivated with Jatropha curcas or Ricinus communis, in a tropical system in Guantanamo (Cuba), in order to verify if a change of land use to biofuel plant production had any effect on the AMF communities. We also asses whether some soil properties related with the soil fertility (total N, Organic C, microbial biomass C, aggregate stability percentage, pH and electrical conductivity) were changed with the cultivation of both crop species. The AM fungal small sub-unit (SSU) rRNA genes were subjected to PCR, cloning, sequencing and phylogenetic analyses. Twenty AM fungal sequence types were identified: 19 belong to the Glomeraceae and one to the Paraglomeraceae. Two AMF sequence types related to cultured AMF species (Glo G3 for Glomus sinuosum and Glo G6 for Glomus intraradices-G. fasciculatum-G. irregulare) did not occur in the soil cultivated with J. curcas and R. communis. The soil properties (total N, Organic C and microbial biomass C) were higher in the soil cultivated with the two plant species. The diversity of the AMF community decreased in the soil of both crops, with respect to the native vegetation soil, and varied significantly depending on the crop species planted. Thus, R. communis soil showed higher AMF diversity than J. curcas soil. In conclusion, R. communis could be more suitable for the long-term conservation and sustainable management of these tropical ecosytems

    Investigation of an odor source in Changwon City using multi-monitoring methods. A case study of Korea

    No full text
    It is a regular occurrence for residents living near industrial plants to complain regarding odor problems. Those plants may also try to protect themselves from liability by demonstrating some environmental evidence. An investigation to prove whether the accused industrial complex is the major source of released odors among several potential sources of odor problems was carried out using the combination of measurement techniques. The multi-monitoring methods comprise utilizations of olfactory system, questionnaire, electronic detector and chemical analysis. This study demonstrated the achievement of integrating scientific monitoring methods to support the enforcement of odor acts for management in the industrial city

    Net energy calculations for production of biodiesel and biogas from haematococcus pluvialis and nannochloropsis sp

    No full text
    Microalgae have been proposed as possible alternative feedstock for the production of biodiesel because of their high photosynthetic efficiency. However, the high energy input required for microalgal culture and oil extraction may negate this advantage. There is a need to determine whether microalgal biodiesel can deliver more energy than is required to produce it. Using the Cumulative Energy Demand method in SimaproŸ, net energy calculations were done on systems to produce biodiesel and biogas from two microalgae species: Haematococcus pluvialis and Nannochloropsis sp. In spite of very optimistic assumptions, the results show a large energy deficit for both systems. Largest contributions came from the energy required to culture the microalgae and the energy required to either dry the microalgae or to disrupt the cell wall. Recommendations are made to develop wet extraction and transesterification technology to make microalgal biodiesel systems viable from an energy standpoint. © Springer 2011
    corecore