223 research outputs found

    Fully quantum mechanical dynamic analysis of single-photon transport in a single-mode waveguide coupled to a traveling-wave resonator

    Full text link
    We analyze the dynamics of single photon transport in a single-mode waveguide coupled to a micro-optical resonator using a fully quantum mechanical model. We examine the propagation of a single-photon Gaussian packet through the system under various coupling conditions. We review the theory of single photon transport phenomena as applied to the system and we develop a discussion on the numerical technique we used to solve for dynamical behavior of the quantized field. To demonstrate our method and to establish robust single photon results, we study the process of adiabatically lowering or raising the energy of a single photon trapped in an optical resonator under active tuning of the resonator. We show that our fully quantum mechanical approach reproduces the semi-classical result in the appropriate limit and that the adiabatic invariant has the same form in each case. Finally, we explore the trapping of a single photon in a system of dynamically tuned, coupled optical cavities.Comment: 24 pages, 10 figure

    Truly unentangled photon pairs without spectral filtering

    Full text link
    We demonstrate that an integrated silicon microring resonator is capable of efficiently producing photon pairs that are completely unentangled; such pairs are a key component of heralded single photon sources. A dual-channel interferometric coupling scheme can be used to independently tune the quality factors associated with the pump and signal and idler modes, yielding a biphoton wavefunction with Schmidt number arbitrarily close to unity. This will permit the generation of heralded single photon states with unit purity.Comment: 5 pages, 3 figure

    Nonlinear Photon Pair Generation in a Highly Dispersive Medium

    Get PDF
    Photon pair generation in silicon photonic integrated circuits relies on four wave mixing via the third order nonlinearity. Due to phase matching requirements and group velocity dispersion, this method has typically required TE polarized light. Here, we demonstrate TM polarized photon pair production in linearly uncoupled silicon resonators with more than an order of magnitude more dispersion than previous work. We achieve measured rates above 2.8 kHz and a heralded second order correlation of . This method enables phase matching in dispersive media and paves the way for novel entanglement generation in silicon photonic device

    Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Nano Letters, copyright © American Chemical Society after peer review and technica editing by the publisher. To access the final edited and published work see http://pubs.acs.org/page/policy/articlesonrequest/index.htmlWe demonstrate experimentally all-optical switching on a silicon chip at telecom wavelengths. The switching device comprises a compact ring resonator formed by horizontal silicon slot waveguides filled with highly nonlinear silicon nanocrystals in silica. When pumping at power levels about 100 mW using 10 ps pulses, more than 50% modulation depth is observed at the switch output. The switch performs about I order of magnitude faster than previous approaches on silicon and is fully fabricated using complementary metal oxide semiconductor technologies.The work was financially supported by the EU through project PHOLOGIC (FP6-IST-NMP-017158).Martínez Abietar, AJ.; Blasco Solbes, J.; Sanchis Kilders, P.; Galan Conejos, JV.; García-Rupérez, J.; Jordana, E.; Gautier, P.... (2010). Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths. Nano Letters. 10(4):1506-1511. doi:10.1021/nl9041017S1506151110

    A full degree-of-freedom photonic crystal spatial light modulator

    Get PDF
    Harnessing the full complexity of optical fields requires complete control of all degrees-of-freedom within a region of space and time -- an open goal for present-day spatial light modulators (SLMs), active metasurfaces, and optical phased arrays. Here, we solve this challenge with a programmable photonic crystal cavity array enabled by four key advances: (i) near-unity vertical coupling to high-finesse microcavities through inverse design, (ii) scalable fabrication by optimized, 300 mm full-wafer processing, (iii) picometer-precision resonance alignment using automated, closed-loop "holographic trimming", and (iv) out-of-plane cavity control via a high-speed micro-LED array. Combining each, we demonstrate near-complete spatiotemporal control of a 64-resonator, two-dimensional SLM with nanosecond- and femtojoule-order switching. Simultaneously operating wavelength-scale modes near the space- and time-bandwidth limits, this work opens a new regime of programmability at the fundamental limits of multimode optical control.Comment: 25 pages, 20 figure

    Integrated photon sources for quantum information science applications

    Get PDF
    Ring resonators are used as photon pair sources by taking advantage of the materials second or third order non-linearities through the processes of spontaneous parametric downconversion and spontaneous four wave mixing respectively. Two materials of interest for these applications are silicon for the infrared and aluminum nitride for the ultraviolet through the infrared. When fabricated into ring type sources they are capable of producing pairs of indistinguishable photons but typically suffer from an effective 50% loss. By slightly decoupling the input waveguide from the ring, the drop port coincidence ratio can be significantly increased with the trade-off being that the pump is less efficiently coupled into the ring. Ring resonators with this design have been demonstrated having coincidence ratios of 96% but requiring a factor of ∼10 increase in the pump power. Through the modification of the coupling design that relies on additional spectral dependence, it is possible to achieve similar coincidence ratios without the increased pumping requirement. This can be achieved by coupling the input waveguide to the ring multiple times, thus creating a Mach-Zehnder interferometer. This coupler design can be used on both sides of the ring resonator so that resonances supported by one of the couplers are suppressed by the other. This is the ideal configuration for a photon-pair source as it can only support the pump photons at the input side while only allowing the generated photons to leave through the output side. Recently, this device has been realized with preliminary results exhibiting the desired spectral dependence and with a coincidence ratio as high as ∼ 97% while allowing the pump to be nearly critically coupled to the ring. The demonstrated near unity coincidence ratio infers a near maximal heralding efficiency from the fabricated device. This device has the potential to greatly improve the scalability and performance of quantum computing and communication systems.National Science Foundation (U.S.) (Grant ECCS- 1542081)National Science Foundation (U.S.) (Award No. ECCS14052481

    A full degree-of-freedom spatiotemporal light modulator

    Get PDF
    Harnessing the full complexity of optical fields requires complete control of all degrees-of-freedom within a region of space and time — an open goal for present-day spatial light modulators (SLMs), active metasurfaces, and optical phased arrays. Here, we solve this challenge with a programmable photonic crystal cavity array enabled by four key advances: (i) near-unity vertical coupling to high-finesse microcavities through inverse design, (ii) scalable fabrication by optimized, 300 mm full-wafer processing, (iii) picometer-precision resonance alignment using automated, closed-loop “holographic trimming”, and (iv) out-of-plane cavity control via a high-speed µLED array. Combining each, we demonstrate near-complete spatiotemporal control of a 64-resonator, two-dimensional SLM with nanosecond- and femtojoule-order switching. Simultaneously operating wavelength-scale modes near the space- and time-bandwidth limits, this work opens a new regime of programmability at the fundamental limits of multimode optical control
    corecore