935 research outputs found

    Alternative Linear Chiral Models for Nuclear Matter

    Get PDF
    The equation of state of a family of alternative linear chiral models in the mean field approximation is discussed. We investigate the analogy between some of these models with current models in the literature, and we show that it is possible to reproduce very well the saturation properties of nuclear matter.Comment: 11 pages in Latex, 4 ps figures include

    Elimination of antibiotic multi-resistant salmonella typhimurium from swine waste water by microalgae-induced antibacterial mechanisms.

    Get PDF
    Abstract: The effect of microalgae-based swine waste water treatment on the removal of antibiotic multi-resistant Salmonella enterica serovar Typhimurium was investigated. Photobioreactors (PBRs) containing diluted swine digestate with and without microalgae Scenedesmus spp. were inoculated with S. Typhimurium (108 Colony Forming Units per milliliters - CFU mL-1). Viable cells of S. Typhimurium were quantified over time by plate counts and qPCR amplification of the Salmonella invasion gene activator, hilA. In the absence of microalgae, S. Typhimurium concentrations increased 1.5 log cells mL-1 in 96 h. In the presence of microalgae, S. Typhimurium was completely eradicated within 48 h. In the PBRs with controlled pH (6.8 ± 0.8), concentration of S. Typhimurium remained constant (2.8 ± 0.2 log CFU mL-1) throughout 96 h. Thus, natural increase in pH>10 due to photosynthesis was detrimental to the antibiotic multi-resistant bacteria survival. Phycoremediation holds promises as an alternative for waste water treatment process for the elimination of the serious public health threatening antibiotic multi-resistant bacteria, thus effectively avoiding Salmonellosis outbreaks arising from animal farming activities

    Progress in unveiling extreme particle acceleration in persistent astrophysical jets

    Get PDF
    International audienceExtreme blazars emitting teraelectronvolt photons are ideal targets to study particle acceleration processes. The growing number of such sources has been critical for γ-ray cosmology, studying intergalactic magnetic fields and putting constraints on exotic physics

    Software design for the control system for Small-Size Telescopes with single-mirror of the Cherenkov Telescope Array

    Full text link
    The Small-Size Telescope with single-mirror (SST-1M) is a 4 m Davies-Cotton telescope and is among the proposed telescope designs for the Cherenkov Telescope Array (CTA). It is conceived to provide the high-energy (>> few TeV) coverage. The SST-1M contains proven technology for the telescope structure and innovative electronics and photosensors for the camera. Its design is meant to be simple, low-budget and easy-to-build industrially. Each device subsystem of an SST-1M telescope is made visible to CTA through a dedicated industrial standard server. The software is being developed in collaboration with the CTA Medium-Size Telescopes to ensure compatibility and uniformity of the array control. Early operations of the SST-1M prototype will be performed with a subset of the CTA central array control system based on the Alma Common Software (ACS). The triggered event data are time stamped, formatted and finally transmitted to the CTA data acquisition. The software system developed to control the devices of an SST-1M telescope is described, as well as the interface between the telescope abstraction to the CTA central control and the data acquisition system.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Prototype of the SST-1M Telescope Structure for the Cherenkov Telescope Array

    Full text link
    A single-mirror small-size (SST-1M) Davies-Cotton telescope with a dish diameter of 4 m has been built by a consortium of Polish and Swiss institutions as a prototype for one of the proposed small-size telescopes for the southern observatory of the Cherenkov Telescope Array (CTA). The design represents a very simple, reliable, and cheap solution. The mechanical structure prototype with its drive system is now being tested at the Institute of Nuclear Physics PAS in Krakow. Here we present the design of the prototype and results of the performance tests of the structure and the drive and control system.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    The SST-1M camera for the Cherenkov Telescope Array

    Get PDF
    The prototype camera of the single-mirror Small Size Telescopes (SST-1M) proposed for the Cherenkov Telescope Array (CTA) project has been designed to be very compact and to deliver high performance over thirty years of operation. The camera is composed of an hexagonal photo-detection plane made of custom designed large area hexagonal silicon photomultipliers and a high throughput, highly configurable, fully digital readout and trigger system (DigiCam). The camera will be installed on the telescope structure at the H. Niewodnicza{\'n}ski institute of Nuclear Physics in Krakow in fall 2015. In this contribution, we review the steps that led to the development of the innovative photo-detection plane and readout electronics, and we describe the test and calibration strategy adopted.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.05894; Full consortium author list at http://cta-observatory.or

    DigiCam - Fully Digital Compact Read-out and Trigger Electronics for the SST-1M Telescope proposed for the Cherenkov Telescope Array

    Full text link
    The SST-1M is one of three prototype small-sized telescope designs proposed for the Cherenkov Telescope Array, and is built by a consortium of Polish and Swiss institutions. The SST-1M will operate with DigiCam - an innovative, compact camera with fully digital read-out and trigger electronics. A high level of integration will be achieved by massively deploying state-of-the-art multi-gigabit transmission channels, beginning from the ADC flash converters, through the internal data and trigger signals transmission over backplanes and cables, to the camera's server link. Such an approach makes it possible to design the camera to fit the size and weight requirements of the SST-1M exactly, and provide low power consumption, high reliability and long lifetime. The structure of the digital electronics will be presented, along with main physical building blocks and the internal architecture of FPGA functional subsystems.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Using muon rings for the optical throughput calibration of the SST-1M prototype for the Cherenkov Telescope Array

    Full text link
    Imaging Atmospheric Cherenkov Telescopes (IACTs) are ground-based instruments devoted to the study of very high energy gamma-rays coming from space. The detection technique consists of observing images created by the Cherenkov light emitted when gamma rays, or more generally cosmic rays, propagate through the atmosphere. While in the case of protons or gamma-rays the images present a filled and more or less elongated shape, energetic muons penetrating the atmosphere are visualised as characteristic circular rings or arcs. A relatively simple analysis of the ring images allows the reconstruction of all the relevant parameters of the detected muons, such as the energy, the impact parameter, and the incoming direction, with the final aim to use them to calibrate the total optical throughput of the given IACT telescope. We present the results of preliminary studies on the use of images created by muons as optical throughput calibrators of the single mirror small size telescope prototype SST-1M proposed for the Cherenkov Telescope Array.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589
    corecore