9,730 research outputs found

    Two repelling random walks on Z\mathbb Z

    Full text link
    We consider two interacting random walks on Z\mathbb{Z} such that the transition probability of one walk in one direction decreases exponentially with the number of transitions of the other walk in that direction. The joint process may thus be seen as two random walks reinforced to repel each other. The strength of the repulsion is further modulated in our model by a parameter β0\beta \geq 0. When β=0\beta = 0 both processes are independent symmetric random walks on Z\mathbb{Z}, and hence recurrent. We show that both random walks are further recurrent if β(0,1]\beta \in (0,1]. We also show that these processes are transient and diverge in opposite directions if β>2\beta > 2. The case β(1,2]\beta \in (1,2] remains widely open. Our results are obtained by considering the dynamical system approach to stochastic approximations.Comment: 17 pages. Added references and corrected typos. Revised the argument for the convergence to equilibria of the vector field. Improved the proof for the recurrence when beta belongs to (0,1); leading to the removal of a previous conjectur

    Stable retrograde orbits around the triple system 2001 SN263

    Full text link
    The NEA 2001 SN263 is the target of the ASTER MISSION - First Brazilian Deep Space Mission. Araujo et al. (2012), characterized the stable regions around the components of the triple system for the planar and prograde cases. Knowing that the retrograde orbits are expected to be more stable, here we present a complementary study. We now considered particles orbiting the components of the system, in the internal and external regions, with relative inclinations between 90<I18090^{\circ}< I \leqslant180^{\circ}, i.e., particles with retrograde orbits. Our goal is to characterize the stable regions of the system for retrograde orbits, and then detach a preferred region to place the space probe. For a space mission, the most interesting regions would be those that are unstable for the prograde cases, but stable for the retrograde cases. Such configuration provide a stable region to place the mission probe with a relative retrograde orbit, and, at the same time, guarantees a region free of debris since they are expected to have prograde orbits. We found that in fact the internal and external stable regions significantly increase when compared to the prograde case. For particles with e=0e=0 and I=180I=180^{\circ}, we found that nearly the whole region around Alpha and Beta remain stable. We then identified three internal regions and one external region that are very interesting to place the space probe. We present the stable regions found for the retrograde case and a discussion on those preferred regions. We also discuss the effects of resonances of the particles with Beta and Gamma, and the role of the Kozai mechanism in this scenario. These results help us understand and characterize the stability of the triple system 2001 SN263 when retrograde orbits are considered, and provide important parameters to the design of the ASTER mission.Comment: 11 pages, 8 figures. Accepted for publication in MNRAS - 2015 March 1

    Optimal Trajectories for Near-Earth-Objects Using Solar Electric Propulsion (SEP) and Gravity Assisted Maneuver

    Get PDF
    The future interplanetary missions will probably use the conventional chemical rockets to leave the sphere of influence of the Earth, and solar electric propulsion (SEP) to accomplish the other maneuvers of the mission. In this work the optimization of interplanetary missions using solar electric propulsion and Gravity Assisted Maneuver to reduce the costs of the mission, is considered. The high specific impulse of electric propulsion makes a Gravity Assisted Maneuver 1 year after departure convenient. Missions for several Near Earth Asteroids will be considered. The analysis suggests criteria for the definition of initial solutions demanded for the process of optimization of trajectories. Trajectories for the asteroid 2002TC70 are analyzed. Direct trajectories, trajectories with 1 gravity assisted from the Earth and with 2 gravity assisted from the Earth and either Mars are present. An indirect optimization method will be used in the simulations

    The role of short periodic orbits in quantum maps with continuous openings

    Get PDF
    We apply a recently developed semiclassical theory of short periodic orbits to the continuously open quantum tribaker map. In this paradigmatic system the trajectories are partially bounced back according to continuous reflectivity functions. This is relevant in many situations that include optical microresonators and more complicated boundary conditions. In a perturbative regime, the shortest periodic orbits belonging to the classical repeller of the open map - a cantor set given by a region of exactly zero reflectivity - prove to be extremely robust in supporting a set of long-lived resonances of the continuously open quantum maps. Moreover, for step like functions a significant reduction in the number needed is obtained, similarly to the completely open situation. This happens despite a strong change in the spectral properties when compared to the discontinuous reflectivity case.Comment: 6 pages, 4 figures. arXiv admin note: text overlap with arXiv:1604.0181

    Using Upgraded Versions Of Close Approach Maneuvers As Transportation Solutions For Deep Space Missions

    Full text link
    Gravity-Assisted maneuvers have been used as a technique to reduce fuel consumption in deep space missions for several decades now. It opened the doors of the exterior solar system. The literature shows those results, as well as new versions of this maneuver, which includes: the use of propulsion combined with the close approach, both high or low thrust; the passage by the atmosphere of a planet to help to change the trajectory of the spacecraft; the use of tethers to increase the changes in the velocity of the spacecraft. All those new versions have the goal of increasing the variations of energy given by the maneuver, making possible missions that would not be possible without this technique

    Strategies For Non-Planar Configurations Of Geostationary Tethered Collecting Solar Power Satellite Systems

    Full text link
    To collect additional solar energy during the hours of darkness and to overcome the limited Terrestrial solar power due to the diurnal day night cycle, the concept of a Geostationary Tethered Collecting Solar Power Satellite System has been proposed by several authors in the last years. This tethered system consists of a long tether used to link two bodies: a single large panel with a capability of collecting solar energy, and an Earth-pointing microwave transmitting satellite. In this manner, the solar energy would be collected directly from the space and beamed back down to any point on Earth. Planar configurations, when the panel and the microwave transmitting satellite are placed on geostationary orbits, have been usually investigated to maintain the tethered system around the Earth. However, this configuration implies that the panel and the microwave transmitting satellite must to orbit the Earth in exactly the same orbital plane of all geostationary satellites

    Collision and Stable Regions around Bodies with Simple Geometric Shape

    Get PDF
    We show the expressions of the gravitational potential of homogeneous bodies with well-defined simple geometric shapes to study the phase space of trajectories around these bodies. The potentials of the rectangular and triangular plates are presented. With these expressions we study the phase space of trajectories of a point of mass around the plates, using the Poincaré surface of section technique. We determined the location and the size of the stable and collision regions in the phase space, and the identification of some resonances. This work is the first and an important step for others studies, considering 3D bodies. The study of the behavior of a point of mass orbiting around these plates (2D), near their corners, can be used as a parameter to understand the influence of the gravitational potential when the particle is close to an irregular surface, such as large craters and ridges

    High coercivity induced by mechanical milling in cobalt ferrite powders

    Get PDF
    In this work we report a study of the magnetic behavior of ferrimagnetic oxide CoFe2O4 treated by mechanical milling with different grinding balls. The cobalt ferrite nanoparticles were prepared using a simple hydrothermal method and annealed at 500oC. The non-milled sample presented coercivity of about 1.9 kOe, saturation magnetization of 69.5 emu/g, and a remanence ratio of 0.42. After milling, two samples attained coercivity of 4.2 and 4.1 kOe, and saturation magnetization of 67.0 and 71.4 emu/g respectively. The remanence ratio MR/MS for these samples increase to 0.49 and 0.51, respectively. To investigate the influence of the microstructure on the magnetic behavior of these samples, we used X-ray powder diffraction (XPD), transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM). The XPD analysis by the Williamson-Hall plot was used to estimate the average crystallite size and strain induced by mechanical milling in the samples
    corecore