1,540 research outputs found

    Gene expression profiling of the dorsolateral and medial orbitofrontal cortex in schizophrenia

    Get PDF
    Schizophrenia is a complex polygenic disorder of unknown etiology. Over 3,000 candidate genes associated with schizophrenia have been reported, most of which being mentioned only once. Alterations in cognitive processing - working memory, metacognition and mentalization - represent a core feature of schizophrenia, which indicates the involvement of the prefrontal cortex in the pathophysiology of this disorder. Hence we compared the gene expression in postmortem tissue from the left and right dorsolateral prefrontal cortex (DLPFC, Brodmann's area 46), and the medial part of the orbitofrontal cortex (MOFC, Brodmann's area 11/12), in six patients with schizophrenia and six control brains. Although in the past decade several studies performed transcriptome profiling in schizophrenia, this is the first study to investigate both hemispheres, providing new knowledge about possible brain asymmetry at the level of gene expression and its relation to schizophrenia. We found that in the left hemisphere, twelve genes from the DLPFC and eight genes from the MOFC were differentially expressed in patients with schizophrenia compared to controls. In the right hemisphere there was only one gene differentially expressed in the MOFC. We reproduce the involvement of previously reported genes TARDBP and HNRNPC in the pathogenesis of schizophrenia, and report seven novel genes: SART1, KAT7, C1D, NPM1, EVI2A, XGY2, and TTTY15. As the differentially expressed genes only partially overlap with previous studies that analyzed other brain regions, our findings indicate the importance of considering prefrontal cortical regions, especially those in the left hemisphere, for obtaining disease-relevant insights

    The velocity of the arterial pulse wave: a viscous-fluid shock wave in an elastic tube

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The arterial pulse is a viscous-fluid shock wave that is initiated by blood ejected from the heart. This wave travels away from the heart at a speed termed the pulse wave velocity (PWV). The PWV increases during the course of a number of diseases, and this increase is often attributed to arterial stiffness. As the pulse wave approaches a point in an artery, the pressure rises as does the pressure gradient. This pressure gradient increases the rate of blood flow ahead of the wave. The rate of blood flow ahead of the wave decreases with distance because the pressure gradient also decreases with distance ahead of the wave. Consequently, the amount of blood per unit length in a segment of an artery increases ahead of the wave, and this increase stretches the wall of the artery. As a result, the tension in the wall increases, and this results in an increase in the pressure of blood in the artery.</p> <p>Methods</p> <p>An expression for the PWV is derived from an equation describing the flow-pressure coupling (FPC) for a pulse wave in an incompressible, viscous fluid in an elastic tube. The initial increase in force of the fluid in the tube is described by an increasing exponential function of time. The relationship between force gradient and fluid flow is approximated by an expression known to hold for a rigid tube.</p> <p>Results</p> <p>For large arteries, the PWV derived by this method agrees with the Korteweg-Moens equation for the PWV in a non-viscous fluid. For small arteries, the PWV is approximately proportional to the Korteweg-Moens velocity divided by the radius of the artery. The PWV in small arteries is also predicted to increase when the specific rate of increase in pressure as a function of time decreases. This rate decreases with increasing myocardial ischemia, suggesting an explanation for the observation that an increase in the PWV is a predictor of future myocardial infarction. The derivation of the equation for the PWV that has been used for more than fifty years is analyzed and shown to yield predictions that do not appear to be correct.</p> <p>Conclusion</p> <p>Contrary to the theory used for more than fifty years to predict the PWV, it speeds up as arteries become smaller and smaller. Furthermore, an increase in the PWV in some cases may be due to decreasing force of myocardial contraction rather than arterial stiffness.</p

    Evaluation of the zucker diabetic fatty (ZDF) rat as a model for human disease based on urinary peptidomic profiles

    Get PDF
    Representative animal models for diabetes-associated vascular complications are extremely relevant in assessing potential therapeutic drugs. While several rodent models for type 2 diabetes (T2D) are available, their relevance in recapitulating renal and cardiovascular features of diabetes in man is not entirely clear. Here we evaluate at the molecular level the similarity between Zucker diabetic fatty (ZDF) rats, as a model of T2D-associated vascular complications, and human disease by urinary proteome analysis. Urine analysis of ZDF rats at early and late stages of disease compared to age- matched LEAN rats identified 180 peptides as potentially associated with diabetes complications. Overlaps with human chronic kidney disease (CKD) and cardiovascular disease (CVD) biomarkers were observed, corresponding to proteins marking kidney damage (eg albumin, alpha-1 antitrypsin) or related to disease development (collagen). Concordance in regulation of these peptides in rats versus humans was more pronounced in the CVD compared to the CKD panels. In addition, disease-associated predicted protease activities in ZDF rats showed higher similarities to the predicted activities in human CVD. Based on urinary peptidomic analysis, the ZDF rat model displays similarity to human CVD but might not be the most appropriate model to display human CKD on a molecular level

    A population of luminous accreting black holes with hidden mergers

    Full text link
    Major galaxy mergers are thought to play an important part in fuelling the growth of supermassive black holes. However, observational support for this hypothesis is mixed, with some studies showing a correlation between merging galaxies and luminous quasars and others showing no such association. Recent observations have shown that a black hole is likely to become heavily obscured behind merger-driven gas and dust, even in the early stages of the merger, when the galaxies are well separated (5 to 40 kiloparsecs). Merger simulations further suggest that such obscuration and black-hole accretion peaks in the final merger stage, when the two galactic nuclei are closely separated (less than 3 kiloparsecs). Resolving this final stage requires a combination of high-spatial-resolution infrared imaging and high-sensitivity hard-X-ray observations to detect highly obscured sources. However, large numbers of obscured luminous accreting supermassive black holes have been recently detected nearby (distances below 250 megaparsecs) in X-ray observations. Here we report high-resolution infrared observations of hard-X-ray-selected black holes and the discovery of obscured nuclear mergers, the parent populations of supermassive-black-hole mergers. We find that obscured luminous black holes (bolometric luminosity higher than 2x10^44 ergs per second) show a significant (P<0.001) excess of late-stage nuclear mergers (17.6 per cent) compared to a sample of inactive galaxies with matching stellar masses and star formation rates (1.1 per cent), in agreement with theoretical predictions. Using hydrodynamic simulations, we confirm that the excess of nuclear mergers is indeed strongest for gas-rich major-merger hosts of obscured luminous black holes in this final stage.Comment: To appear in the 8 November 2018 issue of Nature. This is the authors' version of the wor

    Adaptation to altered balance conditions in unilateral amputees due to atherosclerosis: a randomized controlled study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Amputation impairs the ability to balance. We examined adaptation strategies in balance following dysvascularity-induced unilateral tibial amputation in skilled prosthetic users (SPU) and first fitted amputees (FFA) (N = 28).</p> <p>Methods</p> <p>Excursions of center of pressure (COP) were determined during 20 s quiet standing using a stabilometry system with eyes-open on both legs or on the non-affected leg(s). Main measures: COP trajectories and time functions; distribution of reaction forces between the two legs; inclination angles obtained through second order regression analysis using stabilogram data.</p> <p>Results</p> <p>FFA vs SPU demonstrated 27.8% greater postural sway in bilateral stance (p = 0.0004). Postural sway area was smaller in FFA standing on the non-affected leg compared with SPU (p = 0.028). The slope of the regression line indicating postural stability was nearly identical in FFA and SPU and the direction of regression line was opposite for the left and right leg amputees.</p> <p>Conclusion</p> <p>Of the two adaptation strategies in balance, the first appears before amputation due to pain and fatigue in the affected leg. This strategy appears in the form of reduced postural sway while standing on the non-affected leg. The second adaptation occurs during rehabilitation and regular use of the prosthesis resulting in normal weightbearing associated with reduced postural sway on two legs and return to the normal postural stability on one leg.</p

    Serum vitamin D levels and survival of patients with colorectal cancer: Post-hoc analysis of a prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently, serum 25-hydroxyvitamin D (25OHD) levels were shown to be associated with the survival of patients with colorectal cancer. However, 25OHD levels were measured a median of 6 years before diagnosis or were predicted levels. In this study, we directly measured serum 25OHD levels at surgery and examined the association with survival among patients with colorectal cancer.</p> <p>Methods</p> <p>We started a prospective cohort study to find prognostic factors in patients with colorectal cancer from 2003 to 2008 and stored serum samples and clinical data. As part of a post-hoc analysis, serum 25OHD levels were measured by radioimmunoassay. Association between overall survival and serum 25OHD levels were computed using the Cox proportional hazard model adjusted for month of serum sampling as well as age at diagnosis, gender, cancer stage, residual tumor after surgery, time period of surgery, location of tumor, adjuvant chemotherapy and number of lymph nodes with metastasis at surgery. Unadjusted and adjusted hazard ratios (HR) and 95% confidence intervals (95% CI) were determined.</p> <p>Results</p> <p>Serum 25OHD levels were measured in 257 patients. Only 3% had sufficient levels (30 ng/ml and greater). Based on month of blood sampling, an annual oscillation of 25OHD levels was seen, with levels being lower in spring and higher in late summer. Higher 25OHD levels were associated with better overall survival under multi-variate analysis (HR, 0.91: 95% CI, 0.84 to 0.99, <it>P </it>= 0.027).</p> <p>Conclusions</p> <p>These results suggest that higher 25OHD levels at surgery may be associated with a better survival rate of patients with colorectal cancer.</p

    Policy challenges for the pediatric rheumatology workforce: Part I. Education and economics

    Get PDF
    For children with rheumatic conditions, the available pediatric rheumatology workforce mitigates their access to care. While the subspecialty experiences steady growth, a critical workforce shortage constrains access. This three-part review proposes both national and international interim policy solutions for the multiple causes of the existing unacceptable shortfall. Part I explores the impact of current educational deficits and economic obstacles which constrain appropriate access to care. Proposed policy solutions follow each identified barrier

    Changes in Parasite Virulence Induced by the Disruption of a Single Member of the 235 kDa Rhoptry Protein Multigene Family of Plasmodium yoelii

    Get PDF
    Invasion of the erythrocyte by the merozoites of the malaria parasite is a complex process involving a range of receptor-ligand interactions. Two protein families termed Erythrocyte Binding Like (EBL) proteins and Reticulocyte Binding Protein Homologues (RH) play an important role in host cell recognition by the merozoite. In the rodent malaria parasite, Plasmodium yoelii, the 235 kDa rhoptry proteins (Py235) are coded for by a multigene family and are members of the RH. In P. yoelii Py235 as well as a single member of EBL have been shown to be key mediators of virulence enabling the parasite to invade a wider range of host erythrocytes. One member of Py235, PY01365 is most abundantly transcribed in parasite populations and the protein specifically binds to erythrocytes and is recognized by the protective monoclonal antibody 25.77, suggesting a key role of this particular member in virulence. Recent studies have indicated that overall levels of Py235 expression are essential for parasite virulence. Here we show that disruption of PY01365 in the virulent YM line directly impacts parasite virulence. Furthermore the disruption of PY01365 leads to a reduction in the number of schizonts that express members of Py235 that react specifically with the mcAb 25.77. Erythrocyte binding assays show reduced binding of Py235 to red blood cells in the PY01365 knockout parasite as compared to YM. While our results identify PY01365 as a mediator of parasite virulence, they also confirm that other members of Py235 are able to substitute for PY01365
    corecore