22 research outputs found

    Detection of Biochemical Pathways by Probabilistic Matching of Phyletic Vectors

    Get PDF
    A phyletic vector, also known as a phyletic (or phylogenetic) pattern, is a binary representation of the presences and absences of orthologous genes in different genomes. Joint occurrence of two or more genes in many genomes results in closely similar binary vectors representing these genes, and this similarity between gene vectors may be used as a measure of functional association between genes. Better understanding of quantitative properties of gene co-occurrences is needed for systematic studies of gene function and evolution. We used the probabilistic iterative algorithm Psi-square to find groups of similar phyletic vectors. An extended Psi-square algorithm, in which pseudocounts are implemented, shows better sensitivity in identifying proteins with known functional links than our earlier hierarchical clustering approach. At the same time, the specificity of inferring functional associations between genes in prokaryotic genomes is strongly dependent on the pathway: phyletic vectors of the genes involved in energy metabolism and in de novo biosynthesis of the essential precursors tend to be lumped together, whereas cellular modules involved in secretion, motility, assembly of cell surfaces, biosynthesis of some coenzymes, and utilization of secondary carbon sources tend to be identified with much greater specificity. It appears that the network of gene coinheritance in prokaryotes contains a giant connected component that encompasses most biosynthetic subsystems, along with a series of more independent modules involved in cell interaction with the environment

    Predicting protein linkages in bacteria: Which method is best depends on task

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Applications of computational methods for predicting protein functional linkages are increasing. In recent years, several bacteria-specific methods for predicting linkages have been developed. The four major genomic context methods are: Gene cluster, Gene neighbor, Rosetta Stone, and Phylogenetic profiles. These methods have been shown to be powerful tools and this paper provides guidelines for when each method is appropriate by exploring different features of each method and potential improvements offered by their combination. We also review many previous treatments of these prediction methods, use the latest available annotations, and offer a number of new observations.</p> <p>Results</p> <p>Using <it>Escherichia coli </it>K12 and <it>Bacillus subtilis</it>, linkage predictions made by each of these methods were evaluated against three benchmarks: functional categories defined by COG and KEGG, known pathways listed in EcoCyc, and known operons listed in RegulonDB. Each evaluated method had strengths and weaknesses, with no one method dominating all aspects of predictive ability studied. For functional categories, as previous studies have shown, the Rosetta Stone method was individually best at detecting linkages and predicting functions among proteins with shared KEGG categories while the Phylogenetic profile method was best for linkage detection and function prediction among proteins with common COG functions. Differences in performance under COG versus KEGG may be attributable to the presence of paralogs. Better function prediction was observed when using a weighted combination of linkages based on reliability versus using a simple unweighted union of the linkage sets. For pathway reconstruction, 99 complete metabolic pathways in <it>E. coli </it>K12 (out of the 209 known, non-trivial pathways) and 193 pathways with 50% of their proteins were covered by linkages from at least one method. Gene neighbor was most effective individually on pathway reconstruction, with 48 complete pathways reconstructed. For operon prediction, Gene cluster predicted completely 59% of the known operons in <it>E. coli </it>K12 and 88% (333/418)in <it>B. subtilis</it>. Comparing two versions of the <it>E. coli </it>K12 operon database, many of the unannotated predictions in the earlier version were updated to true predictions in the later version. Using only linkages found by both Gene Cluster and Gene Neighbor improved the precision of operon predictions. Additionally, as previous studies have shown, combining features based on intergenic region and protein function improved the specificity of operon prediction.</p> <p>Conclusion</p> <p>A common problem for computational methods is the generation of a large number of false positives that might be caused by an incomplete source of validation. By comparing two versions of a database, we demonstrated the dramatic differences on reported results. We used several benchmarks on which we have shown the comparative effectiveness of each prediction method, as well as provided guidelines as to which method is most appropriate for a given prediction task.</p

    The evolutionary signal in metagenome phyletic profiles predicts many gene functions

    Get PDF
    Background. The function of many genes is still not known even in model organisms. An increasing availability of microbiome DNA sequencing data provides an opportunity to infer gene function in a systematic manner. Results. We evaluated if the evolutionary signal contained in metagenome phyletic profiles (MPP) is predictive of a broad array of gene functions. The MPPs are an encoding of environmental DNA sequencing data that consists of relative abundances of gene families across metagenomes. We find that such MPPs can accurately predict 826 Gene Ontology functional categories, while drawing on human gut microbiomes, ocean metagenomes, and DNA sequences from various other engineered and natural environments. Overall, in this task, the MPPs are highly accurate, and moreover they provide coverage for a set of Gene Ontology terms largely complementary to standard phylogenetic profiles, derived from fully sequenced genomes. We also find that metagenomes approximated from taxon relative abundance obtained via 16S rRNA gene sequencing may provide surprisingly useful predictive models. Crucially, the MPPs derived from different types of environments can infer distinct, non-overlapping sets of gene functions and therefore complement each other. Consistently, simulations on &gt; 5000 metagenomes indicate that the amount of data is not in itself critical for maximizing predictive accuracy, while the diversity of sampled environments appears to be the critical factor for obtaining robust models. Conclusions. In past work, metagenomics has provided invaluable insight into ecology of various habitats, into diversity of microbial life and also into human health and disease mechanisms. We propose that environmental DNA sequencing additionally constitutes a useful tool to predict biological roles of genes, yielding inferences out of reach for existing comparative genomics approaches

    HIV Promoter Integration Site Primarily Modulates Transcriptional Burst Size Rather Than Frequency

    Get PDF
    Mammalian gene expression patterns, and their variability across populations of cells, are regulated by factors specific to each gene in concert with its surrounding cellular and genomic environment. Lentiviruses such as HIV integrate their genomes into semi-random genomic locations in the cells they infect, and the resulting viral gene expression provides a natural system to dissect the contributions of genomic environment to transcriptional regulation. Previously, we showed that expression heterogeneity and its modulation by specific host factors at HIV integration sites are key determinants of infected-cell fate and a possible source of latent infections. Here, we assess the integration context dependence of expression heterogeneity from diverse single integrations of a HIV-promoter/GFP-reporter cassette in Jurkat T-cells. Systematically fitting a stochastic model of gene expression to our data reveals an underlying transcriptional dynamic, by which multiple transcripts are produced during short, infrequent bursts, that quantitatively accounts for the wide, highly skewed protein expression distributions observed in each of our clonal cell populations. Interestingly, we find that the size of transcriptional bursts is the primary systematic covariate over integration sites, varying from a few to tens of transcripts across integration sites, and correlating well with mean expression. In contrast, burst frequencies are scattered about a typical value of several per cell-division time and demonstrate little correlation with the clonal means. This pattern of modulation generates consistently noisy distributions over the sampled integration positions, with large expression variability relative to the mean maintained even for the most productive integrations, and could contribute to specifying heterogeneous, integration-site-dependent viral production patterns in HIV-infected cells. Genomic environment thus emerges as a significant control parameter for gene expression variation that may contribute to structuring mammalian genomes, as well as be exploited for survival by integrating viruses

    Comparative Genomics of Cell Envelope Components in Mycobacteria

    Get PDF
    Mycobacterial cell envelope components have been a major focus of research due to their unique features that confer intrinsic resistance to antibiotics and chemicals apart from serving as a low-permeability barrier. The complex lipids secreted by Mycobacteria are known to evoke/repress host-immune response and thus contribute to its pathogenicity. This study focuses on the comparative genomics of the biosynthetic machinery of cell wall components across 21-mycobacterial genomes available in GenBank release 179.0. An insight into survival in varied environments could be attributed to its variation in the biosynthetic machinery. Gene-specific motifs like β€˜DLLAQPTPAW’ of ufaA1 gene, novel functional linkages such as involvement of Rv0227c in mycolate biosynthesis; Rv2613c in LAM biosynthesis and Rv1209 in arabinogalactan peptidoglycan biosynthesis were detected in this study. These predictions correlate well with the available mutant and coexpression data from TBDB. It also helped to arrive at a minimal functional gene set for these biosynthetic pathways that complements findings using TraSH

    Computing Highly Correlated Positions Using Mutual Information and Graph Theory for G Protein-Coupled Receptors

    Get PDF
    G protein-coupled receptors (GPCRs) are a superfamily of seven transmembrane-spanning proteins involved in a wide array of physiological functions and are the most common targets of pharmaceuticals. This study aims to identify a cohort or clique of positions that share high mutual information. Using a multiple sequence alignment of the transmembrane (TM) domains, we calculated the mutual information between all inter-TM pairs of aligned positions and ranked the pairs by mutual information. A mutual information graph was constructed with vertices that corresponded to TM positions and edges between vertices were drawn if the mutual information exceeded a threshold of statistical significance. Positions with high degree (i.e. had significant mutual information with a large number of other positions) were found to line a well defined inter-TM ligand binding cavity for class A as well as class C GPCRs. Although the natural ligands of class C receptors bind to their extracellular N-terminal domains, the possibility of modulating their activity through ligands that bind to their helical bundle has been reported. Such positions were not found for class B GPCRs, in agreement with the observation that there are not known ligands that bind within their TM helical bundle. All identified key positions formed a clique within the MI graph of interest. For a subset of class A receptors we also considered the alignment of a portion of the second extracellular loop, and found that the two positions adjacent to the conserved Cys that bridges the loop with the TM3 qualified as key positions. Our algorithm may be useful for localizing topologically conserved regions in other protein families
    corecore