90 research outputs found

    Genetic Variation of Promoter Sequence Modulates XBP1 Expression and Genetic Risk for Vitiligo

    Get PDF
    Our previous genome-wide linkage analysis identified a susceptibility locus for generalized vitiligo on 22q12. To search for susceptibility genes within the locus, we investigated a biological candidate gene, X-box binding protein 1(XBP1). First, we sequenced all the exons, exon-intron boundaries as well as some 5′ and 3′ flanking sequences of XBP1 in 319 cases and 294 controls of Chinese Hans. Of the 8 common variants identified, the significant association was observed at rs2269577 (p_trend = 0.007, OR = 1.36, 95% CI = 1.09–1.71), a putative regulatory polymorphism within the promoter region of XBP1. We then sequenced the variant in an additional 365 cases and 404 controls and found supporting evidence for the association (p_trend = 0.008, OR = 1.31, 95% CI = 1.07–1.59). To further validate the association, we genotyped the variant in another independent sample of 1,402 cases and 1,288 controls, including 94 parent-child trios, and confirmed the association by both case-control analysis (p_trend = 0.003, OR = 1.18, 95% CI = 1.06–1.32) and the family-based transmission disequilibrium test (TDT, p = 0.005, OR = 1.93, 95% CI = 1.21–3.07). The analysis of the combined 2,086 cases and 1,986 controls provided highly significant evidence for the association (p_trend = 2.94×10−6, OR = 1.23, 95% CI = 1.13–1.35). Furthermore, we also found suggestive epistatic effect between rs2269577 and HLA-DRB1*07 allele on the development of vitiligo (p = 0.033). Our subsequent functional study showed that the risk-associated C allele of rs2269577 had a stronger promoter activity than the non-risk G allele, and there was an elevated expression of XBP1 in the lesional skins of patients carrying the risk-associated C allele. Therefore, our study has demonstrated that the transcriptional modulation of XBP1 expression by a germ-line regulatory polymorphism has an impact on the development of vitiligo

    A Tractable Experimental Model for Study of Human and Animal Scabies

    Get PDF
    Scabies, a neglected parasitic disease caused by the microscopic mite Sarcoptes scabiei, is a major driving force behind bacterial skin infections in tropical settings. Aboriginal and Torres Strait Islander peoples are nearly twenty times more likely to die from acute rheumatic fever and rheumatic heart disease than individuals from the wider Australian community. These conditions are caused by bacterial pathogens such as Group A streptococci, which have been linked to underlying scabies infestations. Community based initiatives to reduce scabies and associated disease have expanded, but have been threatened in recent years by emerging drug resistance. Critical biological questions surrounding scabies remain unanswered due to a lack of biomedical research. This has been due in part to a lack of either a suitable animal model or an in vitro culture system for scabies mites. The pig/mite model reported here will be a much needed resource for parasite material and will facilitate in vivo studies on host immune responses to scabies, including relations to associated bacterial pathogenesis, and more detailed studies of molecular evolution and host adaptation. It represents the missing tool to extrapolate emerging molecular data into an in vivo setting and may well allow the development of clinical interventions

    MspI RFLP at CRYB1 locus (17q11.2 → 17q12)

    No full text
    link_to_OA_fulltex

    A rare PvuII RFLP at the CRYB1 locus (17q11.2 → 17q12)

    No full text
    link_to_OA_fulltex

    Autoreactivity and Its Association With Autoimmune Phenotypes in the Type 1 Diabetes Genetics Consortium Study

    No full text
    Autoantibodies targeting the H+/K+-ATPase proton pump of the gastric parietal cell (parietal cell antibodies [PCA]) are diagnostic of atrophic body gastritis (ABG) leading to pernicious anemia (PA). PCA, ABG, and PA occur in increased frequency in patients with type 1 diabetes and their relatives and are considered "minor" components of forms of autoimmune polyglandular syndrome (APS). A customized radioimmunoprecipitation assay was applied to 6,749 samples from the Type 1 Diabetes Genetics Consortium to measure ATP4A autoreactivity. Autoantibody prevalence was correlated with variants in HLA class II, PTPN22, and CTLA4 genes. With an ATP4A radioimmunoprecipitation assay, PCA were detected in sera from 20.9% of affected individuals. PCA prevalence increased with age and was greater in females (25.3%) than males (16.5%) and among Hispanics (36.3%) and blacks (26.2%) compared with non-Hispanic whites (20.8%) and Asians (16.7%). PCA and other organ-specific autoantibodies GAD65, IA-2, thyroid peroxidase (TPO), 21-hydroxylase (21-OH), and transglutaminase (TG) clustered within families with heritability estimates from 71 to 95%. PCA clustered with TPO, 21-OH, and persistent GAD65 autoantibodies but not with celiac (TG) or IA-2 autoantibodies. PCA-positive subjects showed an increased frequency of DRB1*0404, DPB1*0201, and PTPN22 R620W (rs2476601-T) and a decreased frequency of DRB1*0101, DPB1*0301, and CTLA4 CT60 (rs3087243-T). Genetic variants accounted for 4-5% of the heritable risk for PCA. The same alleles were associated with other autoantibody phenotypes in a consistent pattern. Whereas most of the heritable risk for PCA and other antibodies reflects genetic effects that are tissue specific, parietal cell autoimmunity is a major pathogenetic contributor in APS2

    Consortium fine localization of X-linked Charcot-Marie-Tooth disease (CMTX1): additional support that connexin32 is the defect in CMTX1.

    No full text
    Charcot-Marie-Tooth (CMT) disease is the most common form of inherited motor and sensory neuropathy. X-linked CMT (CMTX1) has been localized to the pericentric region of the X chromosome. Recently, mutations have been defined in the connexin32 gene that cosegregate with the CMTX1 phenotype in several families. The present paper presents the results of an international consortium to fine map the gene for CMTX1 to a small segment of Xq12-13. The linkage data, together with the molecular genetic studies, support the hypothesis that connexin32 is the genetic defect in CMTX1
    • …
    corecore