61 research outputs found
Identifying Defects in Li-Ion Cells Using Ultrasound Acoustic Measurements
Identification of the state-of-health (SoH) of Li-ion cells is a vital tool to protect operating battery packs against accelerated degradation and failure. This is becoming increasingly important as the energy and power densities demanded by batteries and the economic costs of packs increase. Here, ultrasonic time-of-flight analysis is performed to demonstrate the technique as a tool for the identification of a range of defects and SoH in Li-ion cells. Analysis of large, purpose-built defects across multiple length scales is performed in pouch cells. The technique is then demonstrated to detect a microscale defect in a commercial cell, which is validated by examining the acoustic transmission signal through the cell. The location and scale of the defects are confirmed using X-ray computed tomography, which also provides information pertaining to the layered structure of the cells. The demonstration of this technique as a methodology for obtaining direct, non-destructive, depth-resolved measurements of the condition of electrode layers highlights the potential application of acoustic methods in real-time diagnostics for SoH monitoring and manufacturing processes
Complications Associated with the Percutaneous Insertion of Fiducial Markers in the Thorax
Radiosurgery requires precise lesion localization. Fiducial markers enable lesion tracking, but complications from insertion may occur. The purpose of this study was to describe complications of fiducial marker insertion into pulmonary lesions.
Clinical and imaging records of 28 consecutive patients with 32 lung nodules or masses who underwent insertion of a total of 59 fiducial markers before radiosurgery were retrospectively reviewed.
Eighteen patients (67%) developed a pneumothorax, and six patients (22%) required a chest tube. The rates of pneumothorax were 82% and 40%, respectively, when 18-gauge and 19-gauge needles were used for marker insertion (P = 0.01). Increased rate of pneumothorax was also associated with targeting smaller lesions (P = 0.03) and tumors not in contact with the pleural surface (P = 0.04). A total of 11 fiducials (19%) migrated after insertion into the pleural space (10 markers) or into the airway (1 marker). Migration was associated with shorter distances from pleura to the marker deposition site (P = 0.04) and with fiducial placement outside of the target lesion (P = 0.03).
Fiducial marker placement into lung lesions is associated with a high risk of pneumothorax and a risk of fiducial migration
Ophthalmic Artery Chemosurgery for Less Advanced Intraocular Retinoblastoma: Five Year Review
BACKGROUND: Ophthalmic artery chemosurgery (OAC) for retinoblastoma was introduced by us 5 years ago for advanced intraocular retinoblastoma. Because the success was higher than with existing alternatives and systemic side effects limited we have now treated less advanced intraocular retinoblastoma (Reese-Ellsworth (RE) I-III and International Classification Retinoblastoma (ICRB) B and C). METHODOLOGY/PRINCIPAL FINDINGS: Retrospective review of 5 year experience in eyes with Reese Ellsworth (Table 1) I (7 eyes), II (6 eyes) or III (6 eyes) and/or International Classification (Table 2) B (19 eyes) and C (11 eyes) treated with OAC (melphalan with or without topotecan) introduced directly into the ophthalmic artery. Patient survival was 100%. Ocular event-free survival was 100% for Reese-Ellsworth Groups I, II and III (and 96% for ICRB B and C) at a median of 16 months follow-up. One ICRB Group C (Reese-Ellsworth Vb) eye could not be treated on the second attempt for technical reasons and was therefore enucleated. No patient required a port and only one patient required transfusion of blood products. The electroretinogram (ERG) was unchanged or improved in 14/19 eyes. CONCLUSIONS/SIGNIFICANCE: Ophthalmic artery chemosurgery for retinoblastoma that was Reese-Ellsworth I, II and III (or International Classification B or C) was associated with high success (100% of treatable eyes were retained) and limited toxicity with results that equal or exceed conventional therapy with less toxicity
EGb761, a Ginkgo Biloba Extract, Is Effective Against Atherosclerosis In Vitro, and in a Rat Model of Type 2 Diabetes
BACKGROUND: EGb761, a standardized Ginkgo biloba extract, has antioxidant and antiplatelet aggregation and thus might protect against atherosclerosis. However, molecular and functional properties of EGb761 and its major subcomponents have not been well characterized. We investigated the effect of EGb761 and its major subcomponents (bilobalide, kaemferol, and quercetin) on preventing atherosclerosis in vitro, and in a rat model of type 2 diabetes. METHODS AND RESULTS: EGb761 (100 and 200 mg/kg) or normal saline (control) were administered to Otsuka Long-Evans Tokushima Fatty rats, an obese insulin-resistant rat model, for 6 weeks (from 3 weeks before to 3 weeks after carotid artery injury). Immunohistochemical staining was performed to investigate cell proliferation and apoptosis in the injured arteries. Cell migration, caspase-3 activity and DNA fragmentation, monocyte adhesion, and ICAM-1/VCAM-1 levels were explored in vitro. Treatment with EGb761 dose-dependently reduced intima-media ratio, proliferation of vascular smooth muscle cells (VSMCs) and induced greater apoptosis than the controls. Proliferation and migration of VSMCs in vitro were also decreased by the treatment of EGb761. Glucose homeostasis and circulating adiponectin levels were improved, and plasma hsCRP concentrations were decreased in the treatment groups. Caspase-3 activity and DNA fragmentation increased while monocyte adhesion and ICAM-1/VCAM-1 levels decreased significantly. Among subcomponents of EGb761, kaemferol and quercetin reduced VSMC migration and increased caspase activity. CONCLUSIONS: EGb761 has a protective role in the development of atherosclerosis and is a potential therapeutic agent for preventing atherosclerosis
A Semantic Problem Solving Environment for Integrative Parasite Research: Identification of Intervention Targets for Trypanosoma cruzi
Effective research in parasite biology requires analyzing experimental lab data in the context of constantly expanding public data resources. Integrating lab data with public resources is particularly difficult for biologists who may not possess significant computational skills to acquire and process heterogeneous data stored at different locations. Therefore, we develop a semantic problem solving environment (SPSE) that allows parasitologists to query their lab data integrated with public resources using ontologies. An ontology specifies a common vocabulary and formal relationships among the terms that describe an organism, and experimental data and processes in this case. SPSE supports capturing and querying provenance information, which is metadata on the experimental processes and data recorded for reproducibility, and includes a visual query-processing tool to formulate complex queries without learning the query language syntax. We demonstrate the significance of SPSE in identifying gene knockout targets for T. cruzi. The overall goal of SPSE is to help researchers discover new or existing knowledge that is implicitly present in the data but not always easily detected. Results demonstrate improved usefulness of SPSE over existing lab systems and approaches, and support for complex query design that is otherwise difficult to achieve without the knowledge of query language syntax
Porous Metal-Organic Frameworks for Enhanced Performance Silicon Anodes in Lithium-Ion Batteries
Maintaining the physical integrity of electrode microstructures in Li-ion batteries is critical to significantly extend their cycle life. This is especially important for high-capacity anode materials such as silicon, whose operational volume expansion exerts huge internal stress within the anode, resulting in electrode destruction and capacity fade. In this study, we demonstrate that by incorporating metal–organic frameworks (MOFs) with carboxylate organic linkers into Si-based anodes, a stable and flexible pore network is generated to maximize and maintain Li-ion flux throughout the electrode’s architecture. We show that the zirconium carboxylate MOF UiO-67 is a versatile comaterial to boost performance and mitigate the rate of anode degradation that presently limits the lifetime of Si anodes. The cage-like pores in UiO-67 and flexural properties of the 4,4′-biphenyldicarboxylate organic linker are proposed to create robust “ionophores” in the anode film to enhance longer term durability and performance
- …